Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 337))

Abstract

We give a purely combinatorial proof of the positivity of the stabilized forms of the generalized exponents associated with each classical root system. In finite type A n−1, we rederive the description of the generalized exponents in terms of crystal graphs without using the combinatorics of semistandard tableaux or the charge statistic. In finite type C n, we obtain a combinatorial description of the generalized exponents based on the so-called distinguished vertices in crystals of type A 2n−1, which we also connect to symplectic King tableaux. This gives a combinatorial proof of the positivity of Lusztig t-analogues associated with zero weight spaces in the irreducible representations of symplectic Lie algebras. We then present three applications of our combinatorial formula. Our methods are expected to extend to the orthogonal types.

By a result of Lascoux, the type A Kostka–Foulkes polynomials also expand positively in terms of the so-called atomic polynomials. We define, in arbitrary type, a combinatorial version of the atomic decomposition, based on the connected components of a modified crystal graph. We prove this property in type A, as well as in types B, C, and D in a stable range for t = 1. We also discuss other cases, applications, and a geometric interpretation. Finally, in classical types, we state the atomic decomposition for stable 1-dimensional sums or, equivalently, for the stable Lusztig t-analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here s ν(x) stands for the ordinary Schur function in the variables x 1, …, x n.

  2. 2.

    The factor (1 − t) in (2.1) gives the missing “d i = 1” in type A n−1.

  3. 3.

    Here that the partition λ can have an odd rank.

  4. 4.

    Nevertheless, we will establish that the atomic decomposition also holds in the column shape case, by (12.1).

References

  1. T. Braden and R. MacPherson. From moment graphs to intersection cohomology. Math. Ann. 321:533–551, 2001.

    Article  MathSciNet  Google Scholar 

  2. T. Brylawski. The lattice of integer partitions. Discrete Math. 6:201–219, 1973.

    Article  MathSciNet  Google Scholar 

  3. M. Dolega, T. Gerber, and J. Torres. A positive combinatorial formula for symplectic Kostka-Foulkes polynomials I: Rows, 2019, J. Algebra 560:1253–1296, 2020. arXiv:1911.06732.

    Google Scholar 

  4. V. Ginzburg. Perverse sheaves on a Loop group and Langlands’ duality. arXiv:math.alg-geom/9511007, 1995.

    Google Scholar 

  5. W-H. Hesselink. Characters of the nullcone. Math. Ann. 252:179–182, 1980.

    Article  MathSciNet  Google Scholar 

  6. B. Ion. Generalized exponents of small representations I. Represent. Theory 13:401–426, 2009.

    Article  MathSciNet  Google Scholar 

  7. B. Ion. Generalized exponents of small representations II. Represent. Theory 15:433–493, 2011.

    Article  MathSciNet  Google Scholar 

  8. I.-S. Jang and J.-H. Kwon. Flagged Littlewood-Richardson tableaux and branching rule for classical groups, 2019, J. Combin. Theory Ser. A 181:105419, 51, 2021. arXiv:1908.11041.

    Google Scholar 

  9. V. G. Kac. Infinite Dimensional Lie Algebras 3rd ed., Cambridge Univ. Press, Cambridge, UK, 1990.

    Book  Google Scholar 

  10. M. Kashiwara. Crystal bases of modified quantized enveloping algebra. Duke Math. J. 73:383–413, 1994.

    Article  MathSciNet  Google Scholar 

  11. S. Kato. Spherical functions and a q-analogue of Kostant’s weight multiplicity formula. Invent. Math. 66:461–468, 1982.

    Article  MathSciNet  Google Scholar 

  12. R. C. King. Weight multiplicities for the classical groups. Lectures Notes in Phys. 50:490–499, 1976.

    Article  MathSciNet  Google Scholar 

  13. B. Kostant. Lie groups representations on polynomial rings. Amer. J. Math. 85:327–404, 1963.

    Article  MathSciNet  Google Scholar 

  14. J.-H. Kwon. Combinatorial extension of stable branching rules for classical groups. Trans. Amer. Math. Soc. 370:6125–6152, 2018.

    Article  MathSciNet  Google Scholar 

  15. J.-H. Kwon. Lusztig data of Kashiwara-Nakashima tableaux in types B and C. J. Algebra 503:222–264, 2018.

    Google Scholar 

  16. A. Lascoux and M-P. Schützenberger. Sur une conjecture de H. O. Foulkes. C. R. Acad. Sci. Paris 288:95–98, 1979.

    Google Scholar 

  17. A. Lascoux, B. Leclerc, and J-Y. Thibon. Crystal graphs and q-analogue of weight multiplicities for the root system A n. Lett. Math. Phys. 35:359–374, 1995.

    Article  MathSciNet  Google Scholar 

  18. A. Lascoux. Cyclic permutations on words, tableaux and harmonic polynomials. In Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), pages 323–347. Manoj Prakashan, Madras, 1991.

    Google Scholar 

  19. A. Lascoux. Polynomials, 2013, available at http://phalanstere.u-perm.fr/~al/ARTICLES/ CoursYGKM.pdf.

  20. C. Lecouvey and C. Lenart. Combinatorics of generalized exponents. Int. Math. Res. Not. 16:4942–4992, 2020.

    Article  MathSciNet  Google Scholar 

  21. C. Lecouvey and C. Lenart. Atomic decomposition of characters and crystals, Adv. Math., 376:107453, 51, 2021.

    Google Scholar 

  22. C. Lecouvey. Kostka-Foulkes polynomials, cyclage graphs and charge statistic for the root system C n. J. Algebraic Combin. 21:203–240, 2005.

    Article  MathSciNet  Google Scholar 

  23. C. Lecouvey. Combinatorics of crystal graphs and Kostka-Foulkes polynomials for the root systems B n, C n, and D n . European J. Combin. 27:526–557, 2006.

    Article  MathSciNet  Google Scholar 

  24. C. Lecouvey, M. Okado and M. Shimozono. One-dimensional sums and parabolic Lusztig q-analogues. Math. Z. 271:819–865, 2012.

    Article  MathSciNet  Google Scholar 

  25. D.-E. Littlewood. The theory of group characters and matrix representations of groups. Oxford University Press, second edition, 1958.

    Google Scholar 

  26. G. Lusztig. Singularities, character formulas, and a q-analog of weight multiplicities. Analyse et topologie sur les espaces singuliers (II-III), Astérisque 101–102:208–227, 1983.

    Google Scholar 

  27. I. Mirković and K. Vilonen. Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. of Math. (2) 166:95–143, 2007.

    Article  MathSciNet  Google Scholar 

  28. The Sage-Combinat community. Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, 2008. http://combinat.sagemath.org.

  29. J. Sheats. A symplectic jeu de taquin bijection between the tableaux of King and De Concini, Trans. Amer. Math., 351:3569–3607, 1999.

    Article  MathSciNet  Google Scholar 

  30. M. Shimozono. Multi-atoms and monotonicity of generalized Kostka polynomials. European J. Combin. 22:395–414, 2001.

    Article  MathSciNet  Google Scholar 

  31. M. Shimozono. Crystal for dummies. Available at https://aimath.org/WWN/ kostka/crysdumb.pdf.

  32. J. Stembridge. The partial order of dominant weights. Adv. Math. 136:340–364, 1998.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author Cristian Lenart gratefully acknowledges the partial support from the NSF grant DMS–1362627 and the Simons grant #584738. Both authors are grateful to Arthur Lubovsky and Adam Schultze for the computer tests (based on the Sage [28] system) related to this work; they also received support from the NSF grant mentioned above.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Lenart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lecouvey, C., Lenart, C. (2021). Lusztig’s t-Analogue of Weight Multiplicity via Crystals. In: Greenstein, J., Hernandez, D., Misra, K.C., Senesi, P. (eds) Interactions of Quantum Affine Algebras with Cluster Algebras, Current Algebras and Categorification. Progress in Mathematics, vol 337. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-63849-8_10

Download citation

Publish with us

Policies and ethics