Skip to main content
Log in

Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We find robust obstructions to representing a Hamiltonian diffeomorphism as a full k-th power, \(k \ge 2\), and in particular, to including it into a one-parameter subgroup. The robustness is understood in the sense of Hofer’s metric. Our approach is based on the theory of persistence modules applied in the context of filtered Floer homology. We present applications to geometry and dynamics of Hamiltonian diffeomorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. This problem has been formulated by Misha Kapovich and L.P. at an Oberwolfach meeting in 2006.

  2. We remark that elsewhere in the literature (cf. [25, 26]) such fixed points are called simple, but this terminology would cause unnecessary confusion in the context of this paper.

  3. The original unsuccessful attempt of the authors was to use the BV operator.

  4. It was communicated to us by Paul Seidel.

  5. In order to prove that the map (4) is Lipschitz, one uses a deep isometry theorem between the interleaving distance on persistence modules and the bottleneck distance on barcodes, see [6].

  6. Our understanding of this picture appeared in discussions with Michael Usher and Jun Zhang. For its extension to general symplectic manifolds, we refer the reader to the paper [54] by Usher and Zhang. See also the paper [22] by Fraser.

  7. The term “two-dimensional” would cause confusion in our setting.

  8. This definition is a specific representative of the isomorphism class of limits of the indiscrete groupoid, namely a category with exactly one morphism between any two objects, formed by \(\{ HM ^{(a,b)}(f')\}_{f' \in \mathcal {F}(f)}\) and the continuation maps, rendering each two of these vector spaces canonically isomorphic. Note that this representative of the limit of this diagram is canonically isomorphic by a unique isomorphism to a similar representative of the limit of any of its full subdiagrams, namely subdiagrams with the same morphism sets as in the diagram between any two of their objects (since all the continuation maps are isomorphisms). This observation is useful in showing that this definition satisfies the properties of a r2p persistence module.

  9. This definition is a canonical representative of the isomorphism class in \(\mathcal {D}^S\) of limits in \(\mathcal {D}^S\) of the \(\mathcal {D}^S\)-valued diagram defined by Proposition 2.5.

  10. Here and below, we deal with certain transformations of loop spaces which naturally act on action functionals and on the Riemannian metrics on \(\mathcal {L}_\alpha M\) coming from loops of almost complex structures on M, thus inducing morphisms in Floer homology which are useful for our purposes. We call them diffeomorphisms since this way of thinking provides a right intuition for manipulating these Floer homological constructions. Incidentally, these transformations are genuine diffeomorphisms if understood in the sense of diffeology [31].

  11. We say that a perturbation \(H'\) of H is \(C^2\)-small if \(H'-H\) is a \(C^2\)-small function.

  12. In other words, these vector spaces and isomorphism maps form an indiscrete groupoid in \(\mathrm{Vect}_\mathcal {K}\).

  13. That is—we are considering a specific representative of the limit of the corresponding indiscrete groupoid.

  14. It would be interesting to compare this result with the work of Barannikov [5, 35, 36].

  15. That is the polynomial \(x^p-1 \in \mathcal {K}[x],\) which is separable by the assumption \(\mathrm{char}(\mathcal {K}) \ne p,\) splits over \(\mathcal {K}.\)

References

  1. Albers, P., Frauenfelder, U.: Square roots of Hamiltonian diffeomorphisms. J. Symplectic Geom. 12(3), 427–434 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. Albers, P., Frauenfelder, U.: Bubbles and Onis, Preprint arXiv:1412.4360 (2014)

  3. Arnaud, M.-C., Bonatti, C., Crovisier, S.: Dynamiques symplectiques génériques. Ergod. Theory Dyn. Syst. 25, 1401–1436 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Banyaga, A.: Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique. Commun. Math. Helv. 53, 174–227 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barannikov, S.A.: The framed Morse complex and its invariants, in “Singularities and bifurcations”. Adv. Sov. Math. 21, 93–115 (1994)

    MathSciNet  Google Scholar 

  6. Bauer, U., Lesnick, M.: Induced matchings and the algebraic stability of persistence barcodes. J. Comput. Geom. 6(2), 162–191 (2015)

    MathSciNet  Google Scholar 

  7. Bonatti, C., Crovisier, S., Vago, G., Wilkinson, A.: Local density of diffeomorphisms with large centralizers. Ann. Sci. Éc. Norm. Supér. 41, 925–954 (2008)

    MATH  MathSciNet  Google Scholar 

  8. Bourgeois, F., Oancea, A.: \(S^1\)-Equivariant Symplectic Homology and Linearized Contact Homology, PreprintarXiv:1212.3731 (2012)

  9. Brandenbursky, M., Kedra, J.: On the autonomous metric on the group of area-preserving diffeomorphisms of the 2-disc. Algebraic Geom. Topol. 13, 795–816 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brandenbursky, M., Kedra, J.: Quasi-isometric embeddings into diffeomorphism groups. Groups Geom. Dyn. 7, 523–534 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brandenbursky, M., Shelukhin, E.: On the \(L^p\)-Geometry of Autonomous Hamiltonian Diffeomorphisms of Surfaces, PreprintarXiv:1405.7931 (2014)

  12. Brin, M.: The inclusion of a diffeomorphism into a flow. Izv. Vysš. Učebn. Zaved. Matematika 8(123), 19–25 (1972). (in Russian)

    MathSciNet  Google Scholar 

  13. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Carlsson, G., Zomorodian, A.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discrete Comput. Geom. 42(1), 71–93 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Carlsson, G., Zomorodian, A., Collins, A., Guibas, L.: Persistence barcodes for shapes. Int. J. Shape Model. 11, 149–187 (2005)

    Article  MATH  Google Scholar 

  17. Cohen, D.E.: Combinatorial Group Theory: A Topological Approach, London Mathematical Society Student Texts 14. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  18. Crawley-Boevey, W.: Decomposition of pointwise finite-dimensional persistence modules. J. Algebra Appl. 14, 1550066 (2015)

  19. Floer, A.: Symplectic fixed points and holomorphic spheres. Commun. Math. Phys. 120, 575–611 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Floer, A., Hofer, H., Salamon, D.: Transversality in elliptic Morse theory for the symplectic action. Duke Math. J. 80, 251–292 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Franjione, J.G., Ottino, J.M.: Symmetry concepts for the geometric analysis of mixing flows. Philos. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 338(1650), 301–323 (1992)

    Article  MATH  Google Scholar 

  22. Fraser, M.: Contact Spectral Invariants and Persistence, PreprintarXiv:1502.05979 (2015)

  23. Fukaya, K., Ono, K.: Arnold conjecture and Gromov–Witten invariants. Topology 38, 933–1048 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Gambaudo, J.-M., Ghys, É.: Commutators and diffeomorphisms of surfaces. Ergod. Theory Dyn. Syst. 24, 1591–1617 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ginzburg, V.L.: The Conley conjecture. Ann. Math. 172, 1127–1180 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ginzburg, V.L., Gürel, B.Z.: On the generic existence of periodic orbits in Hamiltonian dynamics. J. Mod. Dyn. 3, 595–610 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ginzburg, V.L., Gürel, B.Z.: Conley conjecture for negative monotone symplectic manifolds. Int. Math. Res. Not. 2012(8), 1748–1767 (2012)

    MATH  Google Scholar 

  28. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. (N.S.) 45(1), 61–75 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hass, J., Scott, P.: Intersections of curves on surfaces. Isr. J. Math. 51, 90–120 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  30. Hofer, H., Salamon, D.: Floer homology and Novikov rings. In: The Floer Memorial volume. Progr. Math. 133, pp. 483–524. Birkhuser, Basel (1995)

  31. Iglesias-Zemmour, P.: Diffeology. In: Mathematical Surveys and Monographs, vol. 185, American Mathematical Society, Providence, RI (2013)

  32. Kapovich, M.: RAAGs in Ham. Geom. Funct. Anal. 22, 733–755 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  33. Khanevsky, M.: Hamiltonian Commutators with Large Hofer Norm, PreprintarXiv:1409.7420 (2014)

  34. Kim, S.-H., Koberda, T.: Anti-Trees and Right-Angled Artin Subgroups of Braid Groups, PreprintarXiv:1312.6465 (2014)

  35. Le Peutrec, D., Nier, F., Viterbo, C.: Precise Arrhenius law for \(p\)-forms: the Witten Laplacian and Morse–Barannikov complex. Ann. Henri Poincaré 14, 567–610 (2013)

    Article  MATH  Google Scholar 

  36. Laudenbach, F.: On an Article by S.A. Barannikov, Preprint (2013)

  37. Liu, G., Tian, G.: Floer homology and Arnold conjecture. J. Diff. Geom. 49(1), 1–74 (1998)

    MATH  MathSciNet  Google Scholar 

  38. Milnor, J.: Remarks on infinite-dimensional Lie groups. In: Relativity, Groups and Topology, II (Les Houches, 1983), pp. 1007–1057. North-Holland, Amsterdam (1984)

  39. Morandi, P.: Field and Galois Theory, Graduate Texts in Mathematics, vol. 167. Springer, New York (1996)

    Book  Google Scholar 

  40. Muzzio, F.J., Meneveau, C., Swanson, P.D., Ottino, J.M.: Scaling and multifractal properties of mixing in chaotic flows. Phys. Fluids A Fluid Dyn. (1989–1993) 4(7), 1439–1456 (1992)

    Article  MathSciNet  Google Scholar 

  41. Oh, Y.-G., Chain level Floer theory and Hofer’s geometry of the Hamiltonian diffeomorphism group. Asian J. Math. 6, 579–624. Erratum 7(2003), 447–448 (2002)

  42. Palis, J.: Vector fields generate few diffeomorphisms. Bull. Am. Math. Soc. 80, 503–505 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  43. Polterovich, L.: Hofer’s diameter and Lagrangian intersections. Int. Math. Res. Not. 4, 217–223 (1998)

    Article  MathSciNet  Google Scholar 

  44. Polterovich, L., Rosen, D.: Function Theory on Symplectic Manifolds, CRM Monograph Series, 34. American Mathematical Society, Providence, RI (2014)

    Google Scholar 

  45. Polterovich, L.: The Geometry of the Group of Symplectic Diffeomorphisms, Lectures in Mathematics ETH Zurich. Birkhauser Verlag, Basel (2001)

  46. Robbin, J., Salamon, D.: The Maslov index for paths. Topology 32(4), 827–844 (1998)

    Article  MathSciNet  Google Scholar 

  47. Salamon, D., Zehnder, E.: Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Commun. Pure Appl. Math. 45, 1303–1360 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  48. Schwarz, M.: On the action spectrum for closed symplectically aspherical manifolds. Pac. J. Math. 193, 419–461 (2000)

    Article  MATH  Google Scholar 

  49. Seidel, P.: \(\pi _1\) of symplectic automorphism groups and invertibles in quantum homology rings. Geom. Funct. Anal. 7(6), 1046–1095 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  50. Seidel, P.: The equivariant pair-of-pants product in fixed point Floer cohomology. Geom. Funct. Anal. 25(3), 942–1007 (2015)

    Article  MathSciNet  Google Scholar 

  51. Sturman, R., Ottino, J.M., Wiggins, S.: The Mathematical Foundations of Mixing. The Linked Twist Map as a Paradigm in Applications: Micro to Macro, Fluids to Solids. Cambridge Monographs on Applied and Computational Mathematics, 22. Cambridge University Press, Cambridge (2006)

  52. Tonkonog, D.: Commuting Symplectomorphisms and Dehn Twists in Divisors, PreprintarXiv:1405.4563 (2014)

  53. Usher, M.: Hofer’s metrics and boundary depth. Annales Scientifiques de l’École Normale Supérieure 46(1), 57–128 (2013)

    MATH  MathSciNet  Google Scholar 

  54. Usher, M., Zhang, J.: Persistent Homology and Floer–Novikov Theory, Preprint arXiv:1502.07928 (2015)

  55. Weinberger, S.: What is \(\ldots \) persistent homology? Not. Am. Math. Soc. 58(1), 36–39 (2011)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to Paul Seidel for his generous help with this paper (see Sect. 1.4 above). We thank Mohammed Abouzaid, Paul Biran, Strom Borman, Frédéric Bourgeois, Octav Cornea, Maia Fraser, Anatole Katok, Michael Khanevsky, Michael Usher, Claude Viterbo, Shmuel Weinberger and Jun Zhang for useful discussions. Our understanding of persistent homology profited from lectures by Yaniv Ganor, Asaf Kislev and Daniel Rosen at a guided reading course delivered by L.P. at Tel Aviv University. We thank all of them. Parts of this paper have been written during L.P.’s stay at the University of Chicago and ETH-Zürich, and E.S.’s stay at the Hebrew University of Jerusalem and CRM, University of Montreal. We thank these institutions for their warm hospitality. Preliminary results of this paper have been presented at symplectic workshops in the Lorentz Center, Leiden (Summer, 2014) and in the Clay Institute, Oxford (Fall, 2014). We are indebted to the organizers, Hansjörg Geiges, Viktor Ginzburg, Federica Pasquotto and Dominic Joyce, Alexander Ritter and Ivan Smith, respectively, for this opportunity. Finally, we thank the referee for a superb job including detecting and correcting several mistakes and suggesting a number of improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Polterovich.

Additional information

Leonid Polterovich: Partially supported by the European Research Council Advanced grant 338809.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polterovich, L., Shelukhin, E. Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules. Sel. Math. New Ser. 22, 227–296 (2016). https://doi.org/10.1007/s00029-015-0201-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-015-0201-2

Mathematics Subject Classification

Navigation