Skip to main content
Log in

Legendrian persistence modules and dynamics

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

We relate the machinery of persistence modules to the Legendrian contact homology theory and to Poisson bracket invariants, and use it to show the existence of connecting trajectories of contact and symplectic Hamiltonian flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (1989)

    Book  Google Scholar 

  2. Arnold, V.: Topological Invariants of Plane Curves and Caustics. AMS, Providence (1994)

    Book  Google Scholar 

  3. Audin, M., Lalonde, F., Polterovich, L.: Symplectic rigidity: Lagrangian submanifolds. In: Holomorphic Curves in Symplectic Geometry, 271–321, Progr. Math., vol. 117. Birkhäuser, Basel (1994)

  4. Auslander, M.: Representation theory of Artin algebras. II. Commun. Algebr. 1, 269–310 (1974)

  5. Azumaya, G.: Corrections and supplementaries to my paper concerning Krull–Remak–Schmidt’s theorem. Nagoya Math. J. 1, 117–124 (1950)

    Article  MathSciNet  Google Scholar 

  6. Barannikov, S.A.: The framed Morse complex and its invariants. In: Singularities and Bifurcations, pp. 93–115, Adv. Soviet Math., vol. 21. AMS, Providence (1994)

  7. Bourgeois, F., Eliashberg, Y., Hofer, H., Wysocki, K., Zehnder, E.: Compactness results in symplectic field theory. Geom. Topol. 7, 799–888 (2003)

    Article  MathSciNet  Google Scholar 

  8. Buhovsky, L., Entov, M., Polterovich, L.: Poisson brackets and symplectic invariants. Selecta Math. 18, 89–157 (2012)

    Article  MathSciNet  Google Scholar 

  9. Chantraine, B., Colin, V., Dimitroglou Rizell, G.: Positive Legendrian isotopies and Floer theory. Ann. Inst. Fourier (Grenoble) 69, 1679–1737 (2019)

    Article  MathSciNet  Google Scholar 

  10. Chazal, F., de Silva, V., Glisse, M., Oudot, S.: The Structure and Stability of Persistence Modules. Springer, New York (2016)

  11. Chekanov, Y.: Differential algebra of Legendrian links. Invent. Math. 150, 441–483 (2002)

    Article  MathSciNet  Google Scholar 

  12. Chernov, V., Nemirovski, S.: Non-negative Legendrian isotopy in \(ST^* M\). Geom. Topol. 14, 611–626 (2010)

    Article  MathSciNet  Google Scholar 

  13. Colin, V., Ferrand, E., Pushkar, P.: Positive isotopies of Legendrian submanifolds and applications. Int. Math. Res. Not., pp. 6231–6254 (2017)

  14. Crawley-Boevey, W.: Decomposition of pointwise finite-dimensional persistence modules. J. Algebra Appl. 14, 1550066 (2015)

    Article  MathSciNet  Google Scholar 

  15. Dimitroglou Rizell, G.: Lifting pseudo-holomorphic polygons to the symplectisation of \(P\times \mathbb{R}\) and applications. Quantum Topol. 7, 29–105 (2016)

    Article  MathSciNet  Google Scholar 

  16. Dimitroglou Rizell, G.: Families of Legendrians and Lagrangians with unbounded spectral norm, preprint. arXiv:2012.15559 (2020)

  17. Dimitroglou Rizell, G., Sullivan, M.: An energy-capacity inequality for Legendrian submanifolds. J. Topol. Anal. 12, 547–623 (2020)

    Article  MathSciNet  Google Scholar 

  18. Dimitroglou Rizell, G., Sullivan, M.: The persistence of the Chekanov–Eliashberg algebra. Selecta Math. 26, 1–32 (2020)

    Article  MathSciNet  Google Scholar 

  19. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS, Providence (2010)

    MATH  Google Scholar 

  20. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science. IEEE, Redondo Beach, pp. 454–463 (2000)

  21. Ekholm, T., Etnyre, J., Sullivan, M.: Legendrian contact homology in \(P\times \mathbb{R} \). Trans. AMS 359, 3301–3335 (2007)

    Article  MathSciNet  Google Scholar 

  22. Ekholm, T.: Rational symplectic field theory over \(\mathbb{Z}_2\) for exact Lagrangian cobordisms. J. Eur. Math. Soc. 10, 641–704 (2008)

    Article  Google Scholar 

  23. Ekholm, T., Honda, K., Kálmán, T.: Legendrian knots and exact Lagrangian cobordisms. J. Eur. Math. Soc. 18, 2627–2689 (2016)

    Article  MathSciNet  Google Scholar 

  24. Ekholm, T., Kálmán, T.: Isotopies of Legendrian 1-knots and Legendrian 2-tori. J. Symplectic Geom. 6, 407–460 (2008)

    Article  MathSciNet  Google Scholar 

  25. Eliashberg, Y., Gromov, M.: Convex symplectic manifolds. In: Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), 135–162, Proc. Sympos. Pure Math., vol. 52, Part 2. AMS, Providence (1991)

  26. Eliashberg, Y.: Invariants in contact topology. In: Proc. Int. Congress Math., vol. II (Berlin, 1998), Extra vol. II, pp. 327–338, Doc. Math. (1998)

  27. Eliashberg, Y., Givental, A., Hofer, H., Introduction to symplectic field theory. In: GAFA 2000 (Tel Aviv, 1999). Geom. and Funct. Analysis 2000. Special Volume, Part II, 560–673 (2000)

  28. Entov, M., Polterovich, L.: Lagrangian tetragons and instabilities in Hamiltonian dynamics. Nonlinearity 30, 13–34 (2017)

    Article  MathSciNet  Google Scholar 

  29. Entov, M., Polterovich, L.: Contact topology and non-equilibrium thermodynamics (2021) (preprint). arXiv:2101.03770

  30. Entov, M., Polterovich, L.: Filtered relative symplectic field theory (in preparation)

  31. Fathi, A.: An Urysohn-type theorem under a dynamical constraint. J. Mod. Dyn. 10, 331–338 (2016)

    Article  MathSciNet  Google Scholar 

  32. Fathi, A.: An Urysohn-type theorem under a dynamical constraint: non-compact case (2019) (preprint)

  33. Floer, A.: Morse theory for Lagrangian intersections. J. Differ. Geom. 28, 513–547 (1988)

    Article  MathSciNet  Google Scholar 

  34. Gabriel, P.: Unzerlegbare Darstellungen, I. Manuscr. Math. 6, 71–103 (1972)

  35. Ganor, Y.: A homotopical viewpoint at the Poisson bracket invariants for tuples of sets. J. Symplectic Geom. 18, 995–1026 (2020)

  36. Geiges, H.: An Introduction to Contact Topology. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  37. Giroux, E.: Convexité en topologie de contact. Comment. Math. Helv. 66, 637–677 (1991)

    Article  MathSciNet  Google Scholar 

  38. Moser, J.: On the volume elements on a manifold. Trans. AMS 120, 288–294 (1965)

    Article  MathSciNet  Google Scholar 

  39. Oudot, S.Y.: Persistence Theory: From Quiver Representations to Data Analysis. AMS, Providence (2015)

    Book  Google Scholar 

  40. Pardon, J.: Contact homology and virtual fundamental cycles. J. Am. Math. Soc. 32, 825–919 (2019)

    Article  MathSciNet  Google Scholar 

  41. Polterovich, L., Shelukhin, E.: Autonomous Hamiltonian flows, Hofer’s geometry and persistence modules. Selecta Math. 22, 227–296 (2016)

    Article  MathSciNet  Google Scholar 

  42. Polterovich, L., Rosen, D., Samvelyan, K., Zhang, J.: Topological Persistence in Geometry and Analysis. AMS, Providence (2020)

    Book  Google Scholar 

  43. Ringel, C.M., Tachikawa, H.: QF-3 rings. J. Reine Angew. Math. 272, 49–72 (1974)

    MathSciNet  MATH  Google Scholar 

  44. Webb, C.: Decomposition of graded modules. Proc. AMS 94, 565–571 (1985)

    Article  MathSciNet  Google Scholar 

  45. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33, 249–274 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank F. Bourgeois, B. Chantraine, G. Dimitroglou Rizell, T. Ekholm, Y. Eliashberg, E. Giroux, and M. Sullivan for useful discussions. We also thank A. Fathi for communicating to us his unpublished note [32] containing Theorem 2.1 and its proof. We thank T. Melistas, J. Zhang, and the anonymous referee for numerous corrections, and G. Dimitroglou Rizell for finding a mistake in the original version of Theorem 1.5(ii).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Polterovich.

Additional information

To Claude Viterbo on the occasion of his 60th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In this article the affiliation details for Author Leonid Polterovich were incorrectly given as Technion-Israel Institute of Technology, Haifa, and Tel Aviv University, but should have been Tel Aviv University. The article has been corrected.

Michael Entov was partially supported by the Israel Science Foundation grant 1715/18. Leonid Polterovich was partially supported by the Israel Science Foundation grant 1102/20.

This article is part of the topical collection “Symplectic geometry—A Festschrift in honour of Claude Viterbo’s 60th birthday” edited by Helmut Hofer, Alberto Abbondandolo, Urs Frauenfelder, and Felix Schlenk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Entov, M., Polterovich, L. Legendrian persistence modules and dynamics. J. Fixed Point Theory Appl. 24, 30 (2022). https://doi.org/10.1007/s11784-022-00944-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11784-022-00944-x

Navigation