Skip to main content
Log in

The non-equivariant coherent-constructible correspondence and a conjecture of King

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

The coherent-constructible (CC) correspondence is a relationship between coherent sheaves on a toric variety X and constructible sheaves on a real torus \(\mathbb {T}\). This was discovered by Bondal and established in the equivariant setting by Fang, Liu, Treumann, and Zaslow. In this paper, we explore various aspects of the non-equivariant CC correspondence. Also, we use the non-equivariant CC correspondence to prove the existence of tilting complexes in the derived categories of toric orbifolds satisfying certain combinatorial conditions. This has applications to a conjecture of King.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A different but closely related result is due to Kawamata [27] who proves that all toric varieties admit exceptional collections composed of coherent sheaves.

  2. A related statement is proposed as Conjecture 1.6 in [16].

  3. For an introduction to mirror symmetry with special emphasis on Kontsevich’s HMS, we recommend the nice overview [5].

  4. Bondal’s original statement involved considering first a stratification \(\mathcal {S}_\mathbf {\Sigma }\) on \(\mathbb {T}\) capturing the combinatorics of \(\mathbf {\Sigma }\), and then the subcategory of sheaves constructible with respect to \(\mathcal {S}_\mathbf {\Sigma }\), \( Sh _c(\mathbb {T}, \mathcal {S}_\mathbf {\Sigma })\). However, the categories \( Sh _c(\mathbb {T}, \mathcal {S}_\mathbf {\Sigma })\) and \( Sh _c(\mathbb {T}, \varLambda _\mathbf {\Sigma })\) coincide: This follows from a mild generalization to non-Whitney stratifications of Remark 4.5 below.

  5. We stress that here we are working with the ordinary tensor product of constructible sheaves, as opposed to the convolution product which was discussed in Sect. 5.1.

  6. Note that \(p^! {\mathcal {F}} \in Sh _c(M, {\tilde{\varLambda }}_{\mathbf {\Sigma }})\) is not compactly supported: However, the tensor product \({\tilde{\kappa }}({\tilde{\mathcal {L}}}_j) \otimes p^! {\mathcal {F}}\) is, and therefore lies in \( Sh _{cc}(M, {\tilde{\varLambda }}_{\mathbf {\Sigma }})\) as required.

  7. All algebras appearing in this paper are always assumed to be associative and unital.

References

  1. Abouzaid, M.: Homogeneous coordinate rings and mirror symmetry for toric varieties. Geom. Topol. 10, 1097–1156 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Abouzaid, M.: Morse homology, tropical geometry, and homological mirror symmetry for toric varieties. Selecta Math. New Ser. 15(2), 189–270 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Auroux, D., Katzarkov, L., Orlov, D.: Mirror symmetry for del Pezzo surfaces: vanishing cycles and coherent sheaves. Invent. Math. 166(3), 537–582 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Auroux, D., Katzarkov, L., Orlov, D.: Mirror symmetry for weighted projective planes and their noncommutative deformations. Ann. Math. (Second Series) 167(3), 867–943 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ballard, M.: Meet homological mirror symmetry. In: Modular Forms and String Duality, Fields Inst. Commun., vol. 54, pp. 191–224. Amer. Math. Soc., Providence (2008)

  6. Balthazar, A.: Formality of the constructible derived category for spheres: a combinatorial and a geometric approach. Mediterr. J. Math. 6(4), 403–430 (2009)

    Article  MathSciNet  Google Scholar 

  7. Beilinson, A.: Coherent sheaves on \({\mathbb{P}}^n\) and problems in linear algebra. Funct. Anal. Appl. 12(3), 68–69 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bondal, A.: Derived categories of toric varieties. In: Convex and Algebraic Geometry, Oberwolfach Conference Reports, EMS Publishing House, vol. 3, pp. 284–286 (2006)

  9. Bondal, A.: Integrable systems related to triangulated categories. In: Talk at the MSRI Workshop on Generalized McKay Correspondences and Representation Theory on 3/21/2006. The video is available at http://www.msri.org/communications/vmath/VMathVideos/VideoInfo/2469/show_video

  10. Borisov, L.A., Chen, L., Smith, G.G.: The orbifold Chow ring of toric Deligne-Mumford stacks. J. Am. Math. Soc. 18(1), 193–215 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Borisov, L.A., Horja, R.P.: On the \(K\)-theory of smooth toric DM stacks. In: Snowbird Lectures on String Geometry, Contemp. Math, vol. 401, pp. 21–42. Amer. Math. Soc., Providence (2006)

  12. Borisov, L.A., Hua, Z.: On the conjecture of King for smooth toric Deligne-Mumford stacks. Adv. Math. 221(1), 277–301 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Buczynska, W.: Fake weighted projective spaces. arXiv:0805.1211

  14. Costa, L., Miró-Roig, R.M.: Tilting sheaves on toric varieties. Math. Z. 248(4), 849–865 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Drinfeld, V.: DG quotients of DG categories. J. Algebra 272(2), 643–691 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Efimov, A.I.: Maximal lengths of exceptional collections of line bundles. arXiv:1010.3755

  17. Fang, B., Treumann, D., Liu, C.-C., Zaslow, E.: A categorification of Morelli’s theorem. Invent. Math. 186(1), 179–214 (2011)

    Article  MathSciNet  Google Scholar 

  18. Fang, B., Treumann, D., Liu, C.-C., Zaslow, E.: The Coherent-Constructible correspondence for toric Deligne-Mumford stacks. arXiv:0911.4711

  19. Fang, B., Liu, C.-C., Treumann, D., Zaslow, E.: T-duality and homological mirror symmetry for toric varieties. Adv. Math. 229(3), 1875–1911 (2012)

    Article  MathSciNet  Google Scholar 

  20. Fantechi, B., Mann, E., Nironi, F.: Smooth toric DM stacks. J. Reine Angew. Math. 648, 201–244 (2010)

    MATH  MathSciNet  Google Scholar 

  21. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian intersection Floer theory: anomaly and obstruction. Part I and II. In: AMS/IP Studies in Advanced Mathematics, International Press, Somerville (2009)

  22. Gelfánd, S.I., Manin, Y.I.: Methods of Homological Algebra. Springer Monographs in Mathematics, 2nd edn. Springer, Berlin (2002)

    Google Scholar 

  23. Guillermou, S., Schapira, P.: Microlocal theory of sheaves and Tamarkin’s non displaceability theorem. arXiv:1106.1576

  24. Hille, L., Perling, M.: A counterexample to King’s conjecture. Compos. Math. 142(6), 1507–1521 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Iwanari, I.: The category of toric stacks. Compos. Math. 145(3), 718–746 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kapranov, M.: Mutations and Serre functors in constructible sheaves. Funct. Anal. Appl. 24, 155–156 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kawamata, Y.: Derived categories of toric varieties II. Mich. Math. J. 62(2), 225–448 (2013)

    Article  MathSciNet  Google Scholar 

  28. Keller, B.: On differential graded categories. In: International Congress of Mathematicians, vol. II, pp. 151–190. Eur. Math. Soc, Zürich (2006)

  29. King, A.D.: Tilting bundles on some rational surfaces. Preprint http://www.maths.bath.ac.uk/~masadk/papers/tilt.ps

  30. Kashiwara, M., Schapira, P.: Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschafte, vol. 292. Springer, Berlin (1994)

    Google Scholar 

  31. Kontsevich, M.: Lectures at ENS. Paris, Spring 1998, notes taken by J. Bellaiche, J.-F. Dat, I. Marin, G. Racinet and H. Randriambololona (1998)

  32. Lunts, V., Orlov, D.: Uniqueness of enhancement for triangulated categories. J. Am. Math. Soc. 23, 853–908 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lurie, J.: Higher algebra. http://www.math.harvard.edu/~lurie/papers/HigherAlgebra

  34. Nadler, D.: Microlocal branes are constructible sheaves. Sel. Math. 15(4), 563–619 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Nadler, D., Zaslow, E.: Constructible sheaves and the Fukaya category. J. Am. Math. Soc. 22, 233–286 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Polishchuk, A.: Perverse sheaves on a triangulated space. Math. Res. Lett. 4, 191–199 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  37. Prasad, G., Yeung, S.-K.: Fake projective planes. Invent. Math. 168(2), 321–370 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc. 2(39), 436–456 (1989)

    Article  MathSciNet  Google Scholar 

  39. Romagny, M.: Group actions on stacks and applications. Mich. Math. J. 53(1), 209–236 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  40. Seidel, P.: Fukaya categories and Picard-Lefschetz theory. European Mathematical Society (EMS), Zürich, Zürich Lectures in Advanced Mathematics (2008)

  41. Strominger, A., Yau, S.-T., Zaslow, E.: Mirror symmetry is T-duality. Nucl. Phys. B 479(12), 243–259 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  42. Toen, B.: Lectures on DG-categories. http://www.math.univ-montp2.fr/~toen

  43. Treumann, D.: Exit paths and constructible stacks. Compos. Math. 145, 1504–1532 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  44. Treumann, D.: Remarks on the nonequivariant coherent-constructible correspondence for toric varieties. arXiv:1006.5756

  45. Vistoli, A.: Intersection theory on algebraic stacks and their moduli spaces. Invent. Math. 97, 613–670 (1987)

    Article  MathSciNet  Google Scholar 

  46. Vybornov, M.: Constructible sheaves on simplicial complexes and Koszul duality. Math. Res. Lett. 5, 675–683 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank David Treumann and Eric Zaslow for their interest in this project. We thank particularly David Treumann for many useful discussions. Claus Ringel kindly answered some of our questions. S.S. thanks the Mathematical Institute for funding and providing a stimulating environment. N.S. thanks the Max Planck Institute for Mathematics for excellent working conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolò Sibilla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scherotzke, S., Sibilla, N. The non-equivariant coherent-constructible correspondence and a conjecture of King. Sel. Math. New Ser. 22, 389–416 (2016). https://doi.org/10.1007/s00029-015-0193-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-015-0193-y

Mathematics Subject Classification

Navigation