Skip to main content
Log in

A categorification of Morelli’s theorem

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove a theorem relating torus-equivariant coherent sheaves on toric varieties to polyhedrally-constructible sheaves on a vector space. At the level of K-theory, the theorem recovers Morelli’s description of the K-theory of a smooth projective toric variety (Morelli in Adv. Math. 100(2):154–182, 1993). Specifically, let X be a proper toric variety of dimension n and let \(M_{\mathbb{R}} = \mathrm{Lie}(T_{\mathbb{R}}^{\vee})\cong\mathbb {R}^{n}\) be the Lie algebra of the compact dual (real) torus \(T_{\mathbb{R}}^{\vee}\cong U(1)^{n}\). Then there is a corresponding conical Lagrangian Λ⊂T M and an equivalence of triangulated dg categories \(\mathcal{P}\mathrm{erf}_{T}(X) \cong\mathit{Sh}_{cc}(M_{\mathbb{R}};\Lambda)\), where \(\mathcal{P}\mathrm{erf}_{T}(X)\) is the triangulated dg category of perfect complexes of torus-equivariant coherent sheaves on X and Sh cc (M ;Λ) is the triangulated dg category of complex of sheaves on M with compactly supported, constructible cohomology whose singular support lies in Λ. This equivalence is monoidal—it intertwines the tensor product of coherent sheaves on X with the convolution product of constructible sheaves on M .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abouzaid, M.: Morse homology, tropical geometry, and homological mirror symmetry for toric varieties. Sel. Math. New Ser. 15, 189–270 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arinkin, D.: Orthogonality of natural sheaves on moduli stacks of SL(2)-bundles with connections on ℙ1 minus 4 points. Sel. Math. New Ser. 7, 213–239 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Zvi, D., Francis, J., Nadler, D.: Integral transforms and Drinfeld centers in derived algebraic geometry. J. Am. Math. Soc. 23(4), 909–966 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bondal, A.: Derived categories of toric varieties. In: Convex and Algebraic Geometry. Oberwolfach conference reports, vol. 3, pp. 284–286. EMS Publishing House, Zürich (2006)

    Google Scholar 

  5. Costa, L., Miró-Roig, R.M.: Tilting sheaves on toric varieties. Math. Z. 248, 849–865 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Drinfeld, V.: DG quotients of DG categories. J. Algebra 272(2), 643–691 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fang, B.: Homological mirror symmetry is T-duality for ℙn. Commun. Number Theory Phys. 2, 719–742 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Fang, B., Treumann, D., Liu, C.-C., Zaslow, E.: T-duality and homological mirror symmetry of toric varieties. arXiv:0811.1228v4

  9. Fulton, W.: Introduction to Toric Varieties. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  10. Hartshorne, R.: Residue and Duality. Lecture Notes in Math., vol. 20. Springer, Heidelberg (1966)

    Google Scholar 

  11. Karshon, Y., Tolman, S.: The moment map and line bundles over pre-symplectic toric manifolds. J. Differ. Geom. 38(3), 465–484 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Kashiwara, M., Schapira, P.: Sheaves on Manifolds. Grundlehren der Mathematischen Wissenschafte, vol. 292. Springer, Berlin (1994)

    Google Scholar 

  13. Kontsevich, M.: Homological algebra of mirror symmetry. In: Proceedings of the International Congress of Mathematicians, Zürich, 1994, pp. 120–139 (1995)

    Google Scholar 

  14. Morelli, R.: The K theory of a toric variety. Adv. Math. 100(2), 154–182 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nadler, D.: Microlocal Branes are Constructible Sheaves. Sel. Math. New Ser. 15, 563–619 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nadler, D.: Springer theory via the Hitchin fibration. Compos. Math., to appear. arXiv:0806.4566

  17. Nadler, D., Zaslow, E.: Constructible sheaves and the Fukaya category. J. Am. Math. Soc. 22, 233–286 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Strominger, A., Yau, S.-T., Zaslow, E.: Mirror symmetry is T-duality. Nucl. Phys. B 479, 243–259 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Toën, B.: The homotopy theory of dg-categories and derived Morita theory. Invent. Math. 167, 615–667 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Treumann, D.: Remarks on the nonequivariant coherent-constructible correspondence. arXiv:1006.5756

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiu-Chu Melissa Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, B., Liu, CC.M., Treumann, D. et al. A categorification of Morelli’s theorem. Invent. math. 186, 79–114 (2011). https://doi.org/10.1007/s00222-011-0315-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-011-0315-x

Keywords

Navigation