Skip to main content
Log in

Properties of the solutions of delocalised coagulation and inception problems with outflow boundaries

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

Well-posedness is established for a family of equations modelling particle populations undergoing delocalised coagulation, advection, inflow and outflow in a externally specified velocity field. Very general particle types are allowed, while the spatial domain is a bounded region of d-dimensional space for which every point lies on exactly one streamline associated with the velocity field. The problem is formulated as a semi-linear ODE in the Banach space of bounded, additive set functions on particle position and type space. A local Lipschitz property is established in total variation norm for the propagators (generalised semi-groups) associated with the problem and used to construct a Picard iteration that establishes local existence and global uniqueness for any initial condition. The unique weak solution is shown further to be a differentiable or at least bounded variation strong solution under smoothness assumptions on the parameters of the coagulation interaction. In the case of one spatial dimension strong differentiability is established even for coagulation parameters with a particular bounded variation structure in space. This one-dimensional extension establishes the convergence of the simulation processes studied in Patterson (Stoch Anal Appl 31:1–30, 2013) to a unique and differentiable limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Amann and C. Walker. Local and global strong solutions to continuous coagulation-fragmentation equations with diffusion. J. Diff. Eqn., 218(1):159–186, 2005. ISSN 0022-0396. doi:10.1016/j.jde.2004.09.004.

  2. L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. ISBN 0-19-850245-1.

  3. Bailleul I. F.: Spatial coagulation with bounded coagulation rate. J. Evol. Eqn. 11, 675–686 (2011). doi:10.1007/s00028-011-0105-3

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Dunford and J. T. Schwartz. Linear Operators: Part I: General Theory. Pure and Applied Mathematics. Interscience Publishers, New York, 1958.

  5. J. H. M. Evers, S. C. Hille, and A. Muntean. Mild solutions to a measure-valued mass evolution problem with flux boundary conditions. 10 2012. URL http://arxiv.org/abs/1210.4118.

  6. Gillespie D. T.: The stochastic coalescence model for cloud droplet growth. J. Atmos. Sci. 29, 1496–1510 (1972). doi:10.1175/1520-0469(1972)029<1496:TSCMFC>2.0.CO;2

    Article  Google Scholar 

  7. Guiaş F.: Convergence properties of a stochastic model for coagulation-fragmentation processes with diffusion. Stoch. Anal. Appl. 19(2), 245–278 (2001). doi:10.1081/SAP-100001188

    Article  MathSciNet  MATH  Google Scholar 

  8. V. N. Kolokoltsov. Nonlinear Markov Processes and Kinetic Equations. Cambridge University Press, Cambridge, UK, 2010. ISBN 9780521111843.

  9. R. Lang and N. X. Xanh. Smoluchowski’s theory of coagulation in colloids holds rigorously in the Boltzmann-Grad-limit. Probab. Theory Rel. Fields, 54:227–280, 1980. doi:10.1007/BF00534345.

  10. Marcus A. H.: Stochastic coalescence. Technometrics. 10, 133–143 (1968). doi:10.2307/1266230

    Article  MathSciNet  Google Scholar 

  11. W. Menz, S. Shekar, G. Brownbridge, S. Mosbach, R. Körmer, W. Peukert, and M. Kraft. Synthesis of silicon nanoparticles with a narrow size distribution: A theoretical study. J. Aerosol Sci., 44:44–61, 2012. doi:10.1016/j.jaerosci.2011.10.005.

  12. J. Norris. Measure solutions for the Smoluchowski coagulation-diffusion equation. arxiv, 08 2014. URL http://arxiv.org/abs/1408.5228.

  13. J. R. Norris. Brownian coagulation. Comm. Math. Sci., Suppl. Iss. 1:93–101, 2004.

  14. Olson S. E., Christlieb A. J.: Gridless DSMC. J. Comput. Phys. 227, 8035–8064 (2008). doi:10.1016/j.jcp.2008.04.038

    Article  MathSciNet  MATH  Google Scholar 

  15. Patterson R. I. A.: Convergence of stochastic particle systems undergoing advection and coagulation. Stoch. Anal. Appl. 31, 1–30 (2013). doi:10.1080/07362994.2013.817245

    Article  MathSciNet  MATH  Google Scholar 

  16. R. I. A. Patterson and W. Wagner. A stochastic weighted particle method for coagulation-advection problems. SIAM J. Sci. Comput., 34:B290–B311, 2012. doi:10.1137/110843319.

  17. R. I. A. Patterson and W. Wagner. Cell size error in stochastic particle methods for coagulation equations with advection. SIAM J. Numer. Anal., 52(1):424–442, 2014. ISSN 0036-1429. doi:10.1137/130924743.

  18. A. Pazy. Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York, 1983.

  19. M. von Smoluchowski. Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Physik. Zeitschr., XVII:585–599, 1916. The lectures do not have separate titles; coagulation is treated in lecture III, which starts on page 593.

  20. Wells C. G.: A stochastic approximation scheme and convergence theorem for particle interactions with perfectly reflecting boundary conditions. MCMA. 12, 291–342 (2006). doi:10.1515/156939606778705182

    Article  MathSciNet  MATH  Google Scholar 

  21. Wrozsek D.: Mass-conserving solutions to the discrete coagulation—fragmentation model with diffusion. Nonlinear Anal. 49, 297–314 (2002). doi:10.1016/S0362-546X(01)00108-0

    Article  MathSciNet  Google Scholar 

  22. M. R. Yaghouti, F. Rezakhanlou, and A. Hammond. Coagulation, diffusion and the continuous Smoluchowski equation. Stoch. Proc. Appl., 132:3042–3080, 2009. doi:10.1016/j.spa.2009.04.001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert I. A. Patterson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patterson, R.I.A. Properties of the solutions of delocalised coagulation and inception problems with outflow boundaries. J. Evol. Equ. 16, 261–291 (2016). https://doi.org/10.1007/s00028-015-0302-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-015-0302-6

Mathematics Subject Classification

Keywords

Navigation