Skip to main content

Advertisement

Log in

Bioavailability and radiocarbon age of fluvial dissolved organic matter (DOM) from a northern peatland-dominated catchment: effect of land-use change

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

The radiocarbon age and biodegradability of dissolved organic matter (DOM) from a northern peat-dominated river system was studied and the effects of land-use were compared. Samples were obtained from streams and ditches comprising sub-catchments of the Kiiminki River, Northern Finland. Sample sites included areas of natural mire, areas subjected to moderate disturbance (ditching to enhance forestry), and areas subjected to serious land use change (agriculture and peat excavation). The study employed a 55 day bioassay that measured the biodegradation potential of surface-water DOM. We identified release of modern (mean 6–13 year old) DOM from natural sites, and material aged up to 1,553 years from disturbed sites. The proportion of biodegradable DOC ranged from 4.1 to 17.9 %, and bacterial DOC removal was modelled using twin-pool and reactivity-continuum (beta distribution) approaches. Bacterial growth efficiency ranged from 0.11 to 0.26 between areas of different land use, and these relatively low values reflect the humic-rich DOM released from boreal peatland. Despite the range of land-use types studied, including intensive peatland excavation areas, there was no detectable relationship between the biological lability of DOM and its radiocarbon age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Austnes K, Evans CD, Eliot-Laize C, Naden PS, Old GH (2010) Effects of storm events on mobilization and in-stream processing of dissolved organic matter (DOM) in a Welsh peatland catchment. Biogeochemistry 99:157–173

    Article  Google Scholar 

  • Benner R, Benitez-Nelson B, Kaiser K, Amon, RMW (2004) Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean. Geophys Res Lett 31. doi:10.1029/2003GL019251

  • Billett MF, Garnett MH, Dinsmore KJ, Dyson KE, Harvey F, Thomson AM, Piirainen S, Kortelainen P (2011) Age and source of different forms of carbon released from boreal peatland streams during spring snowmelt in E. Finland. Biogeochemistry. doi:10.1007/s10533-011-9645-4

    Google Scholar 

  • Broder T, Blodau C, Biester H, Knorr KH (2012) Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences 9:1479–1491

    Article  CAS  Google Scholar 

  • Catalan N, Obrador B, Felip M, Pretus J (2013) Higher reactivity of allochthonous vs. autochthonous DOC sources in a shallow lake. Aquat Sci. doi:10.1007/s00027-013-0302-y

    Google Scholar 

  • Chapman S, Buttler A, Francez AJ, Laggoun-Defarge F, Vasander H, Schloter M, Combe J, Grosvernier P, Harms H, Epron D, Gilbert D, Mitchell E (2003) Exploitation of northern peatlands and biodiversity maintenance: a conflict between economy and ecology. Front Ecol Environ 1:525–532

    Article  Google Scholar 

  • Clark JM, Chapman PJ, Adamson JK, Lane SN (2005) Influence of drought-induced acidification on the mobility of dissolved organic carbon in peat soils. Glob Change Biol 11:791–809

    Article  Google Scholar 

  • Clark J, Lane SN, Chapman PJ, Adamson JK (2008) Link between DOC in near surface peat and stream water in an upland catchment. Sci Total Environ 404:308–315

    Article  CAS  PubMed  Google Scholar 

  • Clutterbuck B, Yallop AR (2010) Land management as a factor controlling dissolved organic carbon release from upland peat soils 2: changes in DOC productivity over four decades. Sci Total Environ 408:6179–6191

    Article  CAS  PubMed  Google Scholar 

  • Dawson JJC, Smith P (2007) Carbon losses from soil and its consequences for land-use management. Sci Total Environ 382:165–190

    Article  CAS  PubMed  Google Scholar 

  • Evans CD, Chapman PJ, Clark JM, Monteith DT, Cressers MS (2006) Alternative explanations for rising dissolved organic carbon export from organic soils. Glob Change Biol 12:2044–2053

    Article  Google Scholar 

  • Evans C, Freeman C, Cork L, Thomas DN, Reynolds B, Billett M, Garnett M, Norris D (2007) Evidence against recent climate-induced destabilization of soil carbon from 14C analysis of riverine dissolved organic matter. Geophys Res Lett 34. doi:10.1029/2007GL029431

  • Garnett MH, Dinsmore KJ, Billett MF (2012) Annual variability in the radiocarbon age and source of dissolved CO2 in a peatland stream. Sci Total Environ 427–428:277–285

    Article  PubMed  Google Scholar 

  • Giorgio PA, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29:503–541

    Article  Google Scholar 

  • Heikkinen K (1994) Organic matter, iron and nutrient transport and nature of dissolved organic matter in the drainage basin of a boreal humic river in northern Finland. Sci Total Environ 152:81–89

    Article  CAS  Google Scholar 

  • Holden J (2005) Peatland hydrology and carbon release: why small-scale process matters. Phil Trans R Soc 363:2891–2913

    Article  CAS  Google Scholar 

  • Holl BS, Fiedler S, Jungkunst HF, Kalbitz K, Freibauer A, Drosler M, Stahr K (2009) Characteristics of dissolved organic matter following 20 years of peatland restoration. Sci Total Environ 408:78–83

    Article  CAS  PubMed  Google Scholar 

  • Holmes RM, McClelland JW, Raymond PA, Frazer BB, Peterson BJ, Stieglitz M (2008) Lability of DOC transported by Alaskan rivers to the Arctic Ocean. Geophys Res Lett 35. doi:10.1029/2007GL032837

  • Hood E, Williams MW, McKnight DM (2005) Sources of dissolved organic matter (DOM) in a Rocky Mountain stream using chemical fractionation and stable isotopes. Biogeochemistry 74:231–255

    Article  CAS  Google Scholar 

  • Koehler B, Wachenfeldt E, Kothawala D, Tranvik LJ (2012) Reactivity continuum of dissolved organic carbon decomposition in lake water. J Geophys Res 117. doi:10.1029/2011JG001793

  • Lee S, Fuhrmann JA (1987) Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microb 53:1298–1303

    CAS  Google Scholar 

  • Lobbes JM, Fitznar HP, Kattner G (2000) Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochim Cosmochim Acta 64:2973–2983

    Article  CAS  Google Scholar 

  • Loh AN, Bauer JE, Druffel ERM (2004) Variable ageing and storage of dissolved organic components in the open ocean. Nature 430:877–881

    Article  CAS  PubMed  Google Scholar 

  • Lonborg C, Alvarez-Salgado XA, Martinez-Garcia S, Miller AEJ, Teira E (2010) Stoichiometry of dissolved organic matter and the kinetics of its microbial degradation in a coastal upwelling system. Aquat Microb Ecol 58:117–126

    Article  Google Scholar 

  • Mann P, Davydova A, Zimov N, Spencer R, Davydov S, Bulygina E, Zimov S, Holmes R (2012) Controls on the composition and lability of dissolved organic matter in Siberia’s Kolyma River basin. J Geophys Res 117. doi:10.1029/2011JG001798

  • Monteith DT, Stoddard JL, Evans CD, Wit HA, Forsius M, Høgåsen T, Wilander A, Skjelkvåle BL, Jeffries DS, Vuorenmaa J, Keller B (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–541

    Article  CAS  PubMed  Google Scholar 

  • Moore TR, Clarkson BR (2007) Dissolved organic carbon in New Zealand peatlands. N Z J Mar Fresh 41:137–141

    Article  CAS  Google Scholar 

  • Moore S, Evans CD, Page SE, Garnett MH, Jones TG, Freeman C, Hooijer A, Wiltshire AJ, Limin SH, Gauci V (2013) Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493:660–664

    Article  CAS  PubMed  Google Scholar 

  • Neff JC, Finlay JC, Zimov SA, Davydov SP, Carrasco JJ, Schuur EAG, Davydova AI (2006) Seasonal changes in the age and structure of dissolved organic carbon in Siberian rivers and streams. Geophys Res Lett 33. doi:10.1029/2006GL028222

  • O’Donnell JA, Aiken GR, Kane ES, Jones JB (2010) Source water controls on the character and origin of dissolved organic matter in streams of the Yukon River basin, Alaska. J Geophys Res 115. doi:10.1029/2009JG001153

  • Räike A, Kortelainen P, Mattsson T, Thomas DN (2012) 36 year trends in dissolved organic carbon export from Finnish rivers to the Baltic Sea. Sci Total Environ 435–436:188–201

    Article  PubMed  Google Scholar 

  • Raymond PA, McClelland JW, Holmes RM, Zhulidov AV, Mull K, Peterson BJ, Striegl RG, Aiken GR, Gurtovaya TY (2007) Flux and age of dissolved organic carbon exported to the Arctic Ocean: A carbon isotopic study of the five largest arctic rivers. Glob Biogeochem Cy 21. doi:10.1029/2007GB002934

  • Sickman JO, DiGiorgio CL, Davisson ML, Lucero DM, Bergamaschi B (2010) Identifying sources of dissolved organic carbon in agriculturally dominated rivers using radiocarbon age dating: Sacramento-San Joaquin River Basin, California. Biogeochemistry 99:79–96

    Article  CAS  Google Scholar 

  • Silvan N, Silvan K, Laine J (2010) Excavation-drier method of energy-peat production reduces detrimental effects of this process on watercourses. Boreal Environ Res 15:347–356

    Google Scholar 

  • Smith LC, MacDonald GM, Velichko AA, Beilman DW, Borisova OK, Frey KE, Kremenetski KV, Sheng Y (2004) Siberian peatlands a net carbon sink and global methane source since the Early Holocene. Science 303:353–356

    Article  CAS  PubMed  Google Scholar 

  • Smits JD, Riemann B (1988) Calculation of cell production from 3H thymidine incorporation with freshwater bacteria. Appl Environ Microbiol 54:2213–2219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tipping E, Billett MF, Bryant CL, Buckingham S, Thacker SA (2010) Sources and ages of dissolved organic matter in peatland streams: evidence from chemistry mixture modelling and radiocarbon data. Biogeochemistry 100:121–137

    Article  CAS  Google Scholar 

  • Toberman H, Laiho R, Evans CD, Artz RRE, Fenner N, Strakova P, Freeman C (2010) Long-term drainage for forestry inhibits extracellular phenol oxidase activity in Finnish boreal mire peat. Eur J Soil Sci 61:950–957

    Article  Google Scholar 

  • Tranvik LJ (1991) Degradation of dissolved organic matter in humic waters by bacteria. Ecol Stud 133:259–283

    Article  Google Scholar 

  • Tulonen T (1993) Bacterial production in a Mesohumic Lake estimated from [14C] leucine incorporation rate. Microbe Ecol 26:201–217

    CAS  Google Scholar 

  • Turunen J (2008) Development of Finnish peatland area and carbon storage 1950–2000. Boreal Environ Res 13:319–334

    CAS  Google Scholar 

  • Tveit A, Schwacke R, Svenning MM, Urich T (2012) Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J 7:299–311

    Article  PubMed Central  PubMed  Google Scholar 

  • Vähätalo AV, Aarnos H, Mantyniemi S (2010) Biodegradability continuum and biodegradation kinetics of natural organic matter described by the beta distribution. Biogeochemistry 100:227–240

    Article  Google Scholar 

  • Vidal LO, Graneli W, Daniel CB, Heiberg L, Roland F (2011) Carbon and phosphorus regulating bacterial metabolism in oligotrophic boreal lakes. J Plankton Res 33:1747–1756

    Article  CAS  Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fuji R, Mopper K (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708

    Article  CAS  PubMed  Google Scholar 

  • Wilson HF, Xenopoulos MA (2008) Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nat Geosci 2:37–41

    Article  Google Scholar 

  • Worrall F, Burt T (2005) Predicting the future DOC flux from upland peat catchments. J Hydrol 300:126–139

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Maj and Tor Nessling Foundation for funding this study. The work was also supported by awards from the Academy of Finland (Finnish Distinguished Professor programme) and Walter and Andrée Nottbeck Foundation. We are grateful to Pia Varmanen, Ilkka Lastumäki, Kirsi Hyvärinen and Susanna Hyvärinen for their help with nutrient analyses and Anne-Mari Luhtanen for her analytical support throughout.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris J. Hulatt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1376 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulatt, C.J., Kaartokallio, H., Asmala, E. et al. Bioavailability and radiocarbon age of fluvial dissolved organic matter (DOM) from a northern peatland-dominated catchment: effect of land-use change. Aquat Sci 76, 393–404 (2014). https://doi.org/10.1007/s00027-014-0342-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-014-0342-y

Keywords

Navigation