Skip to main content
Log in

Feedback Arc Set Problem and NP-Hardness of Minimum Recurrent Configuration Problem of Chip-Firing Game on Directed Graphs

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

In this paper we present further studies of recurrent configurations of chip-firing games on Eulerian directed graphs (simple digraphs), a class on the way from undirected graphs to general directed graphs. A computational problem that arises naturally from this model is to find the minimum number of chips of a recurrent configuration, which we call the minimum recurrent configuration (MINREC) problem. We point out a close relationship between MINREC and the minimum feedback arc set (MINFAS) problem on Eulerian directed graphs, and prove that both problems are NP-hard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bak P., Tang C., Wiesenfeld K.: Self-organized criticality: an explanation of the 1/ f noise. Phys. Rev. Lett. 59(4), 381–384 (1987)

    Article  MathSciNet  Google Scholar 

  2. Benson B., Chakrabarty D., Tetali P.: G-parking functions, acyclic orientations and spanning trees. Discrete Math. 310(8), 1340–1353 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Biggs N.L.: Chip-firing and the critical group of a graph. J. Algebraic Combin. 9(1), 25–45 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Björner A., Lovász L.: Chip-firing games on directed graphs. J. Algebraic Combin. 1(4), 305–328 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Björner A., Lovász L., Shor P.W.: Chip-firing games on graphs. European J. Combin. 12(4), 283–291 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borobia A., Nutov Z., Penn M.: Doubly stochastic matrices and dicycle covers and packings in Eulerian digraphs. Linear Algebra Appl. 246, 361–371 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Charbit P., Thomassé S., Yeo A.: The minimum feedback arc set problem is NP-hard for tournaments. Combin. Probab. Comput. 16(1), 1–4 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chebikin D., Pylyavskyy P.: A family of bijections between G-parking functions and spanning trees. J. Combin. Theory Ser. A 110(1), 31–41 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cori R., Le Borgne Y.: The sand-pile model and Tutte polynomials. Adv. Appl. Math. 30(1-2), 44–52 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dhar D.: Self-organized critical state of sandpile automaton models. Phys. Rev. Lett. 64(14), 1613–1616 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Flier, H.-F.R.: Optimization of railway operations. PhD thesis, ETH, Zürich. Avaible at: http://dx.doi.org/10.3929/ethz-a-007017958 (2011)

  12. Godsil, C., Royle, G.: Algebraic Graph Theory. Grad. Texts in Math., Vol. 207. Springer-Verlag, New York (2001)

  13. Goemans, M.X., Williamson, D.P.: Primal-dual approximation algorithms for feedback problems in planar graphs. In: Cunningham, W.H., McCormick, S.T., Queyranne, M. (eds.) Integer Programming and Combinatorial Optimization, pp. 147–161. Springer, Berlin (1996)

  14. Greene C., Zaslavsky T.: On the interpretation ofWhitney numbers through arrangement of hyperplanes, zonotopes, non-Radon partitions, and orientations of graphs. Trans. Amer. Math. Soc. 280(1), 97–126 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  15. Guo J., Hüffner F., Moser H.: Feedback arc set in bipartite tournaments is NP-complete. Inform. Process. Lett. 102(2-3), 62–65 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guzmán, J., Klivans, C.: Chip-firing and energy minimization on M-matrices. arXiv:1403.1635 (2014)

  17. Holroyd, A.E., Levine, L., Mészáros, K., Peres, Y., Propp, J., Wilson, D.B.: Chip-firing and rotor-routing on directed graphs. In: Sidoravicius, V., Vares, M.E. (eds.) In and Out of Equilibrium II, pp. 331–364. Birkhäuser, Basel (2008)

  18. Huang, H., Ma, J., Shapira, A., Sudakov, B., Yuster, R.: Large feedback arc sets, high minimum degree subgraphs, and long cycles in Eulerian digraphs. Submitted

  19. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)

  20. Latapy M., Phan H.D.: The lattice structure of chip firing games and related models. Phys. D 155(1-2), 69–82 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Magnien C.: Classes of lattices induced by chip firing (and sandpile) dynamics. European J. Combin. 24(6), 665–683 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Majumdar S.N., Dhar D.: Equivalence between the Abelian sandpile model and the q → 0 limit of the Potts model. Phys. A 185, 129–145 (1992)

    Article  Google Scholar 

  23. Merino López C.: Chip firing and the Tutte polynomial. Ann. Combin. 1(3), 253–259 (1997)

    Article  MATH  Google Scholar 

  24. Perkinson, D., Perlman, J., Wilmes, J.: Primer for the algebraic geometry of sandpiles. In: Amini, O., Baker, M., Faber, X. (eds.) Tropical and Non-Archimedean Geometry, pp. 211–256. Amer. Math. Soc., Providence, RI (2013)

  25. Perrot, K., Pham, T.V.: Chip-firing game and partial Tutte polynomial for Eulerian digraphs. arXiv:1306.0294 (2013)

  26. Pham T.V., Phan T.H.D.: Lattices generated by chip firing game models: criteria and recognition algorithms. European J. Combin. 34(5), 812–832 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Postnikov A., Shapiro B.: Trees, parking functions, syzygies, and deformations of monomial ideals. Trans. Amer. Math. Soc. 356(8), 3109–3142 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ramachandran V.: Finding a minimum feedback arc set in reducible flow graphs. J. Algorithms 9(3), 299–313 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  29. Schulz M.: An NP-complete problem for the Abelian sandpile model. Complex Systems 17(1-2), 17–28 (2007)

    MATH  MathSciNet  Google Scholar 

  30. Schulz, M.: Minimal recurrent configurations of chip firing games and directed acyclic graphs. Discrete Math. Theor. Comput. Sci. Proc. AL, 111–124 (2010)

  31. Seymour P.D.: Packing directed circuits fractionally. Combinatorica 15(2), 281–288 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Seymour P.D.: Packing circuits in Eulerian digraphs. Combinatorica 16(2), 223–231 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  33. Speer E.R.: Asymmetric Abelian sandpile models. J. Statist. Phys. 71(1-2), 61–74 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  34. Stamm, H.: On feedback problems in planar digraphs. In: Möhring, R.H. (ed.) Graph-Theoretic Concepts in Computer Science. Lect. Notes Comput. Sci. Eng., Vol. 484, pp. 79–89. Springer, Berlin (1991)

  35. Stanley, R.P.: Enumerative Combinatorics. Vol. 2. Cambridge University Press, Cambridge (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trung Van Pham.

Additional information

This paper was partially sponsored by Vietnam Institute for Advanced Study in Mathematics (VIASM), the Vietnamese National Foundation for Science and Technology Development (NAFOSTED), Fondecyt Postdoctoral Project 3140527, and Nucleo Milenio Informacion y Coordinacion en Redes (ACGO).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrot, K., Van Pham, T. Feedback Arc Set Problem and NP-Hardness of Minimum Recurrent Configuration Problem of Chip-Firing Game on Directed Graphs. Ann. Comb. 19, 373–396 (2015). https://doi.org/10.1007/s00026-015-0266-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-015-0266-9

Mathematics Subject Classification

Keywords

Navigation