Skip to main content

Chip-Firing Games and Critical Groups

  • Chapter
  • First Online:
A Project-Based Guide to Undergraduate Research in Mathematics

Part of the book series: Foundations for Undergraduate Research in Mathematics ((FURM))

Abstract

In this note we introduce a finite abelian group that can be associated with any finite connected graph. This group can be defined in an elementary combinatorial way in terms of chip-firing operations, and has been an object of interest in combinatorics, algebraic geometry, statistical physics, and several other areas of mathematics. We will begin with basic definitions and examples and develop a number of properties that can be derived by looking at this group from different angles. Throughout, we will give exercises, some of which are straightforward and some of which are open questions. We will also highlight some of the many contributions to this area made by undergraduate students.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We have marked papers that have at least one undergraduate coauthor in bold.

References

We have marked papers that have at least one undergraduate coauthor in bold.

  1. Carlos A. Alfaro and Carlos E. Valencia, On the Sandpile group of the cone of a graph, Linear Algebra Appl. 436 (2012), no. 5, 1154–1176.

    Article  MathSciNet  MATH  Google Scholar 

  2. Omid Amini and Janne Kool, A spectral lower bound for the divisorial gonality of metric graphs, Int. Math. Res. Not. IMRN (2016), no. 8, 2423–2450.

    Google Scholar 

  3. Yang An, Matthew Baker, Greg Kuperberg, and Farbod Shokrieh, Canonical representatives for divisor classes on tropical curves and the matrix-tree theorem, Forum Math. Sigma 2 (2014), e24, 25 pp.

    Article  MathSciNet  MATH  Google Scholar 

  4. Kassie Archer, Abby Bishop, Alexander Diaz Lopez, Luis David GarcĂ­a Puente, Darren Glass, and Joel Louwsma, Arithmetical structures on bidents, To appear in Discrete Math. https://arxiv.org/abs/1903.01393, 2019.

  5. Arash Asadi and Spencer Backman, Chip-firing and Riemann-Roch theory for directed graphs, https://arxiv.org/abs/1012.0287v2, (2011).

  6. Roland Bacher, Pierre de la Harpe, and Tatiana Nagnibeda, The lattice of integral flows and the lattice of integral cuts on a finite graph, Bull. Soc. Math. France 125 (1997), no. 2, 167–198.

    Article  MathSciNet  MATH  Google Scholar 

  7. Matthew Baker and Serguei Norine, Riemann-Roch and Abel-Jacobi theory on a finite graph, Adv. Math. 215 (2007), no. 2, 766–788.

    Article  MathSciNet  MATH  Google Scholar 

  8. Matthew Baker and Serguei Norine, Harmonic morphisms and hyperelliptic graphs, Int. Math. Res. Not. IMRN (2009), no. 15, 2914–2955.

    Google Scholar 

  9. Matthew Baker and Farbod Shokrieh, Chip-firing games, potential theory on graphs, and spanning trees, J. Combin. Theory Ser. A 120 (2013), no. 1, 164–182.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ryan Becker and Darren Glass,Cyclic Critical Groups of Graphs, Austral. Jour. of Comb. 64 (2016), 366–375.

    Google Scholar 

  11. Andrew Berget, Andrew Manion, Molly Maxwell, Aaron Potechin, and Victor Reiner,The critical group of a line graph, Ann. Comb. 16 (2012), no. 3, 449–488.

    Google Scholar 

  12. Kenneth Berman, Bicycles and spanning trees, SIAM J. Algebraic Discrete Methods 7 (1986), no. 1, 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  13. Norman Biggs, Algebraic Graph Theory. Second edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1993. viii+205 pp.

    Google Scholar 

  14. N. L. Biggs, Chip-firing and the critical group of a graph, J. Algebraic Combin. 9 (1999), no. 1, 25–45.

    Article  MathSciNet  MATH  Google Scholar 

  15. Anders Björner and László Lovász, Chip-firing games on directed graphs, J. Algebraic Combin. 1 (1992), no. 4, 305–328.

    Article  MathSciNet  MATH  Google Scholar 

  16. Siegfried Bosch and Dino Lorenzini, Grothendieck’s pairing on component groups of Jacobians, Invent. Math. 148 (2002), no. 2, 353–396.

    Article  MathSciNet  MATH  Google Scholar 

  17. David Brandfonbrener, Pat Devlin, Netanel Friedenberg, Yuxuan Ke, Steffen Marcus, Henry Reichard, and Ethan Sciamma,Two-vertex generators of Jacobians of graphs, Electr. J. Comb. 25 (2018), P1.15.

    Google Scholar 

  18. Benjamin Braun, Hugo Corrales, Scott Corry, Luis David García Puente, Darren Glass, Nathan Kaplan, Jeremy L. Martin, Gregg Musiker, and Carlos E. Valencia, Counting arithmetical structures on paths and cycles, Discrete Math. 341 (2018), no. 10, 2949–2963.

    Article  MathSciNet  MATH  Google Scholar 

  19. Morgan V. Brown, Jackson S. Morrow, and David Zureick-Brown, Chip-firing groups of iterated cones, Linear Algebra Appl. 556 (2018), 46–54.

    Article  MathSciNet  MATH  Google Scholar 

  20. David B. Chandler, Peter Sin, and Qing Xiang, The Smith and critical groups of Paley graphs, J. Algebraic Combin. 41 (2015), no. 4, 1013–1022.

    Google Scholar 

  21. Sheng Chen and Sheng Kui Ye, Critical groups for homeomorphism classes of graphs, Discrete Mathematics 309 (2009), no. 1, 255–258.

    Article  MathSciNet  MATH  Google Scholar 

  22. Fan R. K. Chung, Spectral graph theory, CBMS Regional Conference Series in Mathematics, vol. 92, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1997.

    Google Scholar 

  23. Mihai Ciucu, Weigen Yan, and Fuji Zhang, The number of spanning trees of plane graphs with reflective symmetry, J. Combin. Theory Ser. A 112 (2005), no. 1, 105–116.

    Article  MathSciNet  MATH  Google Scholar 

  24. Julien Clancy, Nathan Kaplan, Timothy Leake, Sam Payne, and Melanie Matchett Wood,On a Cohen-Lenstra heuristic for Jacobians of random graphs, J. Algebraic Combin. 42 (2015), no. 3, 701–723.

    Google Scholar 

  25. Julien Clancy, Timothy Leake, and Sam Payne,A note on Jacobians, Tutte polynomials, and two-variable zeta functions of graphs, Exp. Math. 24 (2015), no. 1, 1–7.

    Google Scholar 

  26. Anna Comito, Jennifer Garcia, Josefina Alvarado Rivera, Natalie L. F. Hobson, and Luis David Garcia Puente, On the Sandpile group of circulant graphs, 2016.

    Google Scholar 

  27. Robert Cori and Y. Le Borgne. The Sandpile model and Tutte polynomials. Adv. in Appl. Math., 30 (2003), no. 1, 44–52.

    Google Scholar 

  28. Robert Cori and Dominique Rossin, On the Sandpile group of dual graphs, European J. Combin. 21 (2000), no. 4, 447–459.

    Article  MathSciNet  MATH  Google Scholar 

  29. F. Cools, J. Draisma, S. Payne, and E. Robeva,A tropical proof of the Brill–Noether theorem, Adv. Math. 230 (2012), no. 2, 759–776.

    Google Scholar 

  30. Hugo Corrales and Carlos E. Valencia, Arithmetical structures on graphs, Linear Algebra Appl. 536 (2018), 120–151.

    Article  MathSciNet  MATH  Google Scholar 

  31. ———, Arithmetical structures on graphs with connectivity one, J. Algebra Appl. 17 (2018), no. 8, 1850147, 13.

    Google Scholar 

  32. Scott Corry and David Perkinson, Divisors and Sandpiles: An introduction to chip-firing, American Mathematical Society, Providence, RI, 2018.

    Book  MATH  Google Scholar 

  33. Josse van Dobben de Bruyn and Dion Gijswijt,Treewidth is a lower bound on graph gonality, https://arxiv.org/abs/1407.7055, 2014.

  34. Andrew Deveau, David Jensen, Jenna Kainic, and Dan Mitropolsky,Gonality of random graphs, Involve 9 (2016), no. 4, 715–720.

    Google Scholar 

  35. Joshua E. Ducey, Jonathan Gerhard, and Noah Watson,The Smith and Critical Groups of the Square Rook’s Graph and its Complement, Electr. J. Comb. 23 (2016), no. 4, P4.9.

    Google Scholar 

  36. Neelav Dutta and David Jensen,Gonality of expander graphs, Discrete Math.. 341 (2018), no. 9, 2535–2543.

    Google Scholar 

  37. Alan Frieze and Michał Karoński, Introduction to Random Graphs, Cambridge University Press, Cambridge, 2016.

    Book  MATH  Google Scholar 

  38. Louis Gaudet, David Jensen, Dhruv Ranganathan, Nicholas Wawrykow, and Theodore Weisman,Realization of groups with pairing as Jacobians of finite graphs, Ann. Comb. 22 (2018), no. 4, 781–801.

    Google Scholar 

  39. Mark Giesbrecht, Fast computation of the Smith normal form of an integer matrix, Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation (New York, NY, USA), ISSAC ’95, ACM, 1995, pp. 110–118.

    Google Scholar 

  40. Darren Glass and Criel Merino, Critical groups of graphs with dihedral actions, European J. Combin. 39 (2014), 95–112.

    Article  MathSciNet  MATH  Google Scholar 

  41. Gopal Goel and David Perkinson,Critical groups of iterated cones, Linear Algebra Appl. 567 (2019), 138–142.

    Google Scholar 

  42. Fernando Q. GouvĂŞa, p-adic Numbers: An introduction, second ed., Universitext, Springer-Verlag, Berlin, 1997.

    Google Scholar 

  43. Phillip A Griffiths and Joseph Harris, Principles of Algebraic Geometry, Wiley Classics Library, Wiley, New York, NY, 1994.

    Google Scholar 

  44. Yaoping Hou, Chingwah Woo, and Pingge Chen, On the Sandpile group of the square cycle Cn2, Linear Algebra Appl. 418 (2006), no. 2, 457–467.

    Article  MathSciNet  MATH  Google Scholar 

  45. Brian Jacobson, Andrew Niedermaier, and Victor Reiner,Critical groups for complete multipartite graphs and Cartesian products of complete graphs, Journal of Graph Theory 44 (2003), no. 3, 231–250.

    Google Scholar 

  46. Sameer Kailasa, Vivian Kuperberg, and Nicholas Wawrykow,Chip-firing on trees of loops. Electron. J. Combin. 25 (2018), no. 1, Paper 1.19, 12 pp.

    Google Scholar 

  47. Edward C. Kirby, Roger B. Mallion, Paul Pollak, and Paweł J. Skrzyński, What Kirchhoff actually did concerning spanning trees in electrical networks and its relationship to modern graph-theoretical work, Croatica Chemica Acta 89 (2016).

    Google Scholar 

  48. Caroline Klivans, The Mathematics of Chip-Firing, Chapman and Hall/CRC, New York, 2018.

    Book  MATH  Google Scholar 

  49. S. V. Konyagin, Double exponential lower bound for the number of representations of unity by Egyptian fractions, Math. Notes 95 (2014), no. 1-2, 277–281, Translation of Mat. Zametki 95 (2014), no. 2, 312–316.

    Google Scholar 

  50. Shaked Koplewitz, Sandpile groups and the Coeulerian property for random directed graphs, Adv. in Appl. Math. 90 (2017), 145–159.

    Article  MathSciNet  MATH  Google Scholar 

  51. ———, Sandpile groups of random bipartite graphs, https://arxiv.org/abs/1705.07519, 2017.

  52. Timothy Leake and Dhruv Ranganathan,Brill–Noether theory of maximally symmetric graphs, European J. Combin. 46 (2015), 115–125.

    Google Scholar 

  53. Chang Mou Lim, Sam Payne, and Natasha Potashnik,A note on Brill–Noether theory and rank determining sets for metric graphs, Int. Math. Res. Not. IMRN (2012), no. 23, 5484–5504.

    Google Scholar 

  54. Dino J. Lorenzini, Arithmetical graphs, Math. Ann. 285 (1989), no. 3, 481–501.

    Google Scholar 

  55. ———, Groups of components of Néron models of Jacobians, Compositio Math. 73 (1990), no. 2, 145–160.

    MathSciNet  MATH  Google Scholar 

  56. ———, A finite group attached to the Laplacian of a graph, Discrete Math. 91 (1991), no. 3, 277–282.

    Article  MathSciNet  MATH  Google Scholar 

  57. ———, Smith normal form and Laplacians, J. Combin. Theory Ser. B 98 (2008), no. 6, 1271–1300.

    Article  MathSciNet  MATH  Google Scholar 

  58. Jessie MacWilliams, Orthogonal matrices over finite fields, Amer. Math. Monthly 76 (1969), 152–164.

    Article  MathSciNet  MATH  Google Scholar 

  59. A. D. Mednykh and I. A. Mednykh, On the structure of the Jacobian group of circulant graphs. (Russian) Dokl. Akad. Nauk 469 (2016), no. 5, 539–543; translation in Dokl. Math. 94 (2016), no. 1, 445–449

    Google Scholar 

  60. ———, The number of spanning trees in circulant graphs, its arithmetic properties and asymptotic. Discrete Math. 342 (2019), no. 6, 1772–1781.

    Google Scholar 

  61. András Mészáros, The distribution of sandpile groups of random regular graphs, https://arxiv.org/abs/1806.03736v4, 2020.

  62. Rick Miranda, Nondegenerate symmetric bilinear forms on finite abelian 2-groups, Trans. Amer. Math. Soc. 284 (1984), no. 2, 535–542.

    MathSciNet  MATH  Google Scholar 

  63. Hoi Nguyen and Melanie Matchett Wood, Random integral matrices: universality of surjectivity and the cokernel, https://arxiv.org/abs/1806.00596, 2018.

  64. Victor Reiner and Dennis Tseng,Critical groups of covering, voltage and signed graphs, Discrete Math. 318 (2014), 10–40.

    Google Scholar 

  65. J. Sedláček, On the minimal graph with a given number of spanning trees, Canad. Math. Bull. 13 (1970), 515–517.

    Article  MathSciNet  MATH  Google Scholar 

  66. Farbod Shokrieh, The monodromy pairing and discrete logarithm on the Jacobian of finite graphs, J. Math. Cryptol. 4 (2010), no. 1, 43–56.

    Article  MathSciNet  MATH  Google Scholar 

  67. Daniel A. Spielman, Graphs, vectors, and matrices, Bull. Amer. Math. Soc. (N.S.) 54 (2017), no. 1, 45–61.

    Google Scholar 

  68. Richard P. Stanley, Smith normal form in combinatorics, J. Combin. Theory Ser. A 144 (2016), 476–495.

    Google Scholar 

  69. Arne Storjohann, Near optimal algorithms for computing Smith normal forms of integer matrices, Proceedings of the 1996 international symposium on Symbolic and algebraic computation (New York, NY, USA), ISSAC ’96, ACM, 1996, pp. 267–274.

    Google Scholar 

  70. David G. Wagner, The critical group of a directed graph, https://arXiv:math/0010241, 2000.

    Google Scholar 

  71. C. T. C. Wall, Quadratic forms on finite groups, and related topics, Topology 2 (1963), 281–298.

    Article  MathSciNet  MATH  Google Scholar 

  72. Melanie Matchett Wood, The distribution of sandpile groups of random graphs, J. Amer. Math. Soc. 30 (2017), no. 4, 915–958.

    Google Scholar 

  73. ———, Random integral matrices and the Cohen-Lenstra heuristics, Amer. J. Math. 141 (2019), no. 2, 383–398.

    Google Scholar 

Download references

Acknowledgements

We would like to thank Luis David Garcia-Puente for initiating this project. We would further like to thank David Jensen, Pranav Kayastha, Dino Lorenzini, Sam Payne, Farbod Shokrieh, and the editors and referees for their helpful comments.

The second author is supported by NSF Grant DMS 1802281.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren Glass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glass, D., Kaplan, N. (2020). Chip-Firing Games and Critical Groups. In: Harris, P., Insko, E., Wootton, A. (eds) A Project-Based Guide to Undergraduate Research in Mathematics. Foundations for Undergraduate Research in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-37853-0_4

Download citation

Publish with us

Policies and ethics