Skip to main content
Log in

Modular Decomposition of the Orlik-Terao Algebra

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

Let \({\mathcal{A}}\) be a collection of n linear hyperplanes in \({\mathbb{k}^\ell}\), where \({\mathbb{k}}\) is an algebraically closed field. The Orlik-Terao algebra of \({\mathcal{A}}\) is the subalgebra \({{\rm R}(\mathcal{A})}\) of the rational functions generated by reciprocals of linear forms vanishing on hyperplanes of \({\mathcal{A}}\). It determines an irreducible subvariety \({Y (\mathcal{A})}\) of \({\mathbb{P}^{n-1}}\). We show that a flat X of \({\mathcal{A}}\) is modular if and only if \({{\rm R}(\mathcal{A})}\) is a split extension of the Orlik-Terao algebra of the subarrangement \({\mathcal{A}_X}\). This provides another refinement of Stanley’s modular factorization theorem [34] and a new characterization of modularity, similar in spirit to the fibration theorem of [27]. We deduce that if \({\mathcal{A}}\) is supersolvable, then its Orlik-Terao algebra is Koszul. In certain cases, the algebra is also a complete intersection, and we characterize when this happens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Anick D.J.: On the homology of associative algebras. Trans. Amer. Math. Soc. 296(2), 641–659 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  2. Backelin J., Fröberg R.: Koszul algebras, Veronese subrings and rings with linear resolutions. Rev. Roumaine Math. Pures Appl. 30(2), 85–97 (1985)

    MATH  MathSciNet  Google Scholar 

  3. Berget A.: Products of linear forms and Tutte polynomials. European J. Combin. 31(7), 1924–1935 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Björner, A.: The homology and shellability of matroids and geometric lattices. In: White, N. (ed.) Matroid Applications, Encyclopedia Math. Appl., Vol. 40, pp. 226–283. Cambridge Univ. Press, Cambridge (1992)

  5. Björner A., Ziegler G.M.: Broken circuit complexes: factorizations and generalizations. J. Combin. Theory Ser. B 51(1), 96–126 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brylawski T.: Modular constructions for combinatorial geometries. Trans. Amer. Math. Soc. 203, 1–44 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brylawski T.: The broken-circuit complex. Trans. Amer. Math. Soc. 234(2), 417–433 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brylawski T., Oxley J.: The broken-circuit complex: its structure and factorizations. European J. Combin. 2(2), 107–121 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cartan, H., Eilenberg, S.: Homological Algebra. Princeton University Press, Princeton, NJ (1999)

  10. Denham G., Suciu A.I.: On the homotopy Lie algebra of an arrangement. Michigan Math. J. 54(2), 319–340 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Denham, G., Suciu, A.I.: Multinets, parallel connections, and Milnor fibrations of arrangements. Proc. London Math. Soc., doi:10.1112/plms/pdt058, to appear

  12. Denham G., Yuzvinsky S.: Annihilators of Orlik-Solomon relations. Adv. Appl. Math. 28(2), 231–249 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Eisenbud, D.: Commutative Algebra. Grad. Texts in Math., Vol. 150. Springer-Verlag, New York (1995)

  14. Falk M.: Line-closed matroids, quadratic algebras, and formal arrangements. Adv. in Appl. Math. 28(2), 250–271 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Falk, M.J., Proudfoot, N.J.: Parallel connections and bundles of arrangements. Topology Appl. 118(1-2), 65–83 (2002) (1999).

    Google Scholar 

  16. Grayson, D., Stillman, M., Eisenbud, D.: Macaulay2—a software system for algebraic geometry and commutative algebra. Available online at http://www.math.uiuc.edu/Macaulay2

  17. Horiuchi H., Terao H.: The Poincaré series of the algebra of rational functions which are regular outside hyperplanes. J. Algebra 266(1), 169–179 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Huh J., Katz E.: Log-concavity of characteristic polynomials and the Bergman fan of matroids. Math. Ann. 354(3), 1103–1116 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jambu M., Papadima Ş: A generalization of fiber-type arrangements and a new deformation method. Topology 37(6), 1135–1164 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jambu M., Papadima Ş.: Deformations of hypersolvable arrangements. Topology Appl. 118(1-2), 103–111 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jensen C., McCammond J., Meier J.: The integral cohomology of the group of loops. Geom. Topol. 10, 759–784 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kung J.P.S.: Sign-coherent identities for characteristic polynomials of matroids. Combin. Probab. Comput. 2(1), 33–51 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Looijenga E.: Compactifications defined by arrangements. I: the ball quotient case. Duke Math. J. 118(1), 151–187 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Orlik, P., Terao, H.: Arrangements of Hyperplanes. Grundlehren Math. Wiss., Vol. 300. Springer-Verlag, Berlin (1992)

  25. Orlik P., Terao H.: Commutative algebras for arrangements. Nagoya Math. J. 134, 65–73 (1994)

    MATH  MathSciNet  Google Scholar 

  26. Oxley, J.: Matroid Theory. Second edition. Oxf. Grad. Texts Math., Vol. 21. Oxford University Press, Oxford (2011)

  27. Paris L.: Intersection subgroups of complex hyperplane arrangements. Topology Appl. 105(3), 319–343 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Polishchuk, A., Positselski, L.: Quadratic Algebras. Univ. Lecture Ser., Vol. 37. American Mathematical Society, Providence, RI (2005)

  29. Proudfoot N., Speyer D.: A broken circuit ring. Beiträge Algebra Geom. 47(1), 161–166 (2006)

    MATH  MathSciNet  Google Scholar 

  30. Sanyal R., Sturmfels B., Vinzant C.: The entropic discriminant. Adv. Math. 244, 678–707 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schenck H.: Resonance varieties via blowups of \({\mathbb{P}^2}\) and scrolls. Int. Math. Res. Not. 2011(20), 4756–4778 (2011)

    MATH  MathSciNet  Google Scholar 

  32. Schenck H., Tohǎneanu Ş.O.: The Orlik-Terao algebra and 2-formality. Math. Res. Lett. 16(1), 171–182 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  33. Shelton, B., Yuzvinsky, S.: Koszul algebras from graphs and hyperplane arrangements. J. London Math. Soc. (2) 56(3), 477–490 (1997)

    Google Scholar 

  34. Stanley R.P.: Modular elements of geometric lattices. Algebra Universalis 1, 214–217 (1971/72)

    Article  MathSciNet  Google Scholar 

  35. Terao H.: Modular elements of lattices and topological fibration. Adv. Math. 62(2), 135–154 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  36. Terao H.: Algebras generated by reciprocals of linear forms. J. Algebra 250(2), 549–558 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Denham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denham, G., Garrousian, M. & Tohǎneanu, Ş.O. Modular Decomposition of the Orlik-Terao Algebra. Ann. Comb. 18, 289–312 (2014). https://doi.org/10.1007/s00026-014-0223-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-014-0223-z

Mathematics Subject Classification

Keywords

Navigation