Skip to main content
Log in

Spectral Theory and Mirror Curves of Higher Genus

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

Recently, a correspondence has been proposed between spectral theory and topological strings on toric Calabi–Yau manifolds. In this paper, we develop in detail this correspondence for mirror curves of higher genus, which display many new features as compared to the genus one case studied so far. Given a curve of genus g, our quantization scheme leads to g different trace class operators. Their spectral properties are encoded in a generalized spectral determinant, which is an entire function on the Calabi–Yau moduli space. We conjecture an exact expression for this spectral determinant in terms of the standard and refined topological string amplitudes. This conjecture provides a non-perturbative definition of the topological string on these geometries, in which the genus expansion emerges in a suitable ’t Hooft limit of the spectral traces of the operators. In contrast to what happens in quantum integrable systems, our quantization scheme leads to a single quantization condition, which is elegantly encoded by the vanishing of a quantum-deformed theta function on the mirror curve. We illustrate our general theory by analyzing in detail the resolved \({\mathbb C}^3/{\mathbb Z}_5\) orbifold, which is the simplest toric Calabi–Yau manifold with a genus two mirror curve. By applying our conjecture to this example, we find new quantization conditions for quantum mechanical operators, in terms of genus two theta functions, as well as new number-theoretic properties for the periods of this Calabi–Yau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grassi, A., Hatsuda, Y., Mariño, M.: Topological strings from quantum mechanics. arXiv:1410.3382 [hep-th]

  2. Aganagic, M., Dijkgraaf, R., Klemm, A., Mariño, M., Vafa, C.: Topological strings and integrable hierarchies. Commun. Math. Phys. 261, 451 (2006). arXiv:hep-th/0312085

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Aganagic, M., Cheng, M.C.N., Dijkgraaf, R., Krefl, D., Vafa, C.: Quantum geometry of refined topological strings. JHEP 1211, 019 (2012). arXiv:1105.0630 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  4. Nekrasov, N.A., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge theories. arXiv:0908.4052 [hep-th]

  5. Drukker, N., Mariño, M., Putrov, P.: From weak to strong coupling in ABJM theory. Commun. Math. Phys. 306, 511 (2011). arXiv:1007.3837 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Mariño, M., Putrov, P.: ABJM theory as a Fermi gas. J. Stat. Mech. 1203, P03001 (2012). arXiv:1110.4066 [hep-th]

    MathSciNet  Google Scholar 

  7. Hatsuda, Y., Moriyama, S., Okuyama, K.: Instanton effects in ABJM theory from Fermi gas approach. JHEP 1301, 158 (2013). arXiv:1211.1251 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Hatsuda, Y., Moriyama, S., Okuyama, K.: Instanton bound states in ABJM theory. JHEP 1305, 054 (2013). arXiv:1301.5184 [hep-th]

    Article  ADS  MATH  Google Scholar 

  9. Hatsuda, Y., Mariño, M., Moriyama, S., Okuyama, K.: Non-perturbative effects and the refined topological string. JHEP 1409, 168 (2014). arXiv:1306.1734 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Kallen, J., Mariño, M.: Instanton effects and quantum spectral curves. Annales Henri Poincaré 17(5), 1037 (2016). arXiv:1308.6485 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Kashaev, R., Mariño, M.: Operators from mirror curves and the quantum dilogarithm. arXiv:1501.01014 [hep-th]

  12. Mariño, M., Zakany, S.: Matrix models from operators and topological strings. Annales Henri Poincaré 17(5), 1075 (2016). arXiv:1502.02958 [hep-th]

  13. Kashaev, R., Mariño, M., Zakany, S.: Matrix models from operators and topological strings, 2. arXiv:1505.02243 [hep-th]

  14. Gu, J., Klemm, A., Mariño, M., Reuter, J.: Exact solutions to quantum spectral curves by topological string theory. JHEP 1510, 025 (2015). arXiv:1506.09176 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  15. Rodriguez Villegas, F.: Modular Mahler measures, I. In: Topics in Number Theory, p. 17. Kluwer Acad. Publ., Dordrecht (1999)

  16. Doran, C., Kerr, M.: Algebraic K-theory of toric hypersurfaces. Commun. Number Theory Phys. 5, 397 (2011). arXiv:0809.4669 [math.AG]

    Article  MathSciNet  MATH  Google Scholar 

  17. Katz, S.H., Klemm, A., Vafa, C.: Geometric engineering of quantum field theories. Nucl. Phys. B 497, 173 (1997). arXiv:hep-th/9609239

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Chiang, T.M., Klemm, A., Yau, S.T., Zaslow, E.: Local mirror symmetry: calculations and interpretations. Adv. Theor. Math. Phys. 3, 495 (1999). arXiv:hep-th/9903053

    Article  MathSciNet  MATH  Google Scholar 

  19. Witten, E.: Phases of N = 2 theories in two-dimensions. Nucl. Phys. B 403, 159 (1993). arXiv:hep-th/9301042

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Hori, K., Vafa, C.: Mirror symmetry. arXiv:hep-th/0002222

  21. Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties. J. Alg. Geom. 3, 493 (1994). arXiv:alg-geom/9310003

    MathSciNet  MATH  Google Scholar 

  22. Aganagic, M., Klemm, A., Vafa, C.: Disk instantons, mirror symmetry and the duality web. Z. Naturforsch. A 57, 1 (2002). arXiv:hep-th/0105045

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Mariño, M.: Open string amplitudes and large order behavior in topological string theory. JHEP 0803, 060 (2008). arXiv:hep-th/0612127

    Article  ADS  MathSciNet  Google Scholar 

  24. Bouchard, V., Klemm, A., Mariño, M., Pasquetti, S.: Remodeling the B-model. Commun. Math. Phys. 287, 117 (2009). arXiv:0709.1453 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Eynard, B., Orantin, N.: Computation of open Gromov–Witten invariants for toric Calabi–Yau 3-folds by topological recursion, a proof of the BKMP conjecture. Commun. Math. Phys. 337(2), 483 (2015). arXiv:1205.1103 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Huang, M.X., Klemm, A., Poretschkin, M.: Refined stable pair invariants for E-, M- and \([p, q]\)-strings. JHEP 1311, 112 (2013). arXiv:1308.0619 [hep-th]

    Article  ADS  MATH  Google Scholar 

  27. Klemm, A., Poretschkin, M., Schimannek, T., Westerholt-Raum, M.: Direct integration for mirror curves of genus two and an almost meromorphic Siegel modular form. arXiv:1502.00557 [hep-th]

  28. De la Ossa, X., Florea, B., Skarke, H.: D-branes on noncompact Calabi–Yau manifolds: K theory and monodromy. Nucl. Phys. B 644, 170 (2002). arXiv:hep-th/0104254

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Mukhopadhyay, S., Ray, K.: Fractional branes on a noncompact orbifold. JHEP 0107, 007 (2001). arXiv:hep-th/0102146

    Article  ADS  MathSciNet  Google Scholar 

  30. Karp, R.L.: On the \({\mathbb{C}}^n/{\mathbb{Z}}_m\) fractional branes. J. Math. Phys. 50, 022304 (2009). arXiv:hep-th/0602165

    Article  ADS  MATH  Google Scholar 

  31. Coates, T.: Wall-crossings in toric Gromov–Witten theory, II: local examples. arXiv:0804.2592 [math.AG]

  32. Simon, B.: Trace Ideals and Their Applications, 2nd edn. American Mathematical Society, Providence (2000)

    Google Scholar 

  33. Simon, B.: Notes on infinite determinants of Hilbert space operators. Adv. Math. 24, 244 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  34. Grothendieck, A.: La théorie de Fredholm. Bulletin de la Société Mathématique de France 84, 319 (1956)

    MathSciNet  MATH  Google Scholar 

  35. Fredholm, I.: Sur une classe d’équations fonctionnelles. Acta Math. 27, 365 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stessin, M., Yang, R., Zhu, K.: Analyticity of a joint spectrum and a multivariable analytic Fredhom theorem. N. Y. J. Math. 17, 39 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Chagouel, I., Stessin, M., Zhu, K.: Geometric spectral theory for compact operators. arXiv:1309.4375

  38. Babelon, O., Bernard, D., Talon, M.: An Introduction to Classical Integrable Systems. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  39. Gutzwiller, M.C.: The quantum mechanical Toda lattice. Ann. Phys. 124, 347 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  40. Gutzwiller, M.C.: The quantum mechanical Toda lattice: II. Ann. Phys. 133, 304 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  41. Sklyanin, E.K.: The quantum Toda chain. Lect. Notes Phys. 226, 196 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Gaudin, M., Pasquier, V.: The periodic Toda chain and a matrix generalization of the Bessel function’s recursion relations. J. Phys. A 25, 5243 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Kharchev, S., Lebedev, D.: Integral representation for the eigenfunctions of quantum periodic Toda chain. Lett. Math. Phys. 50, 53 (1999). arXiv:hep-th/9910265

    Article  MathSciNet  MATH  Google Scholar 

  44. An, D.: Complete set of eigenfunctions of the quantum Toda chain. Lett. Math. Phys. 87, 209 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Mironov, A., Morozov, A.: Nekrasov functions and exact Bohr-Zommerfeld integrals. JHEP 1004, 040 (2010). arXiv:0910.5670 [hep-th]

    Article  ADS  MATH  Google Scholar 

  46. Mironov, A., Morozov, A.: Nekrasov functions from exact BS periods: the case of SU(N). J. Phys. A 43, 195401 (2010). arXiv:0911.2396 [hep-th]

    Article  ADS  MATH  Google Scholar 

  47. Kozlowski, K.K., Teschner, J.: TBA for the Toda chain. arXiv:1006.2906 [math-ph]

  48. Matsuyama, A.: Periodic Toda lattice in quantum mechanics. Ann. Phys. 222, 300 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Balian, R., Parisi, G., Voros, A.: Discrepancies from asymptotic series and their relation to complex classical trajectories. Phys. Rev. Lett. 41, 1141 (1978)

    Article  ADS  Google Scholar 

  50. Balian, R., Parisi, G., Voros, A.: Quartic oscillator. In: Feynman Path Integrals. Lecture Notes in Physics, vol. 106, p. 337 (1979)

  51. Huang, M.X.: On gauge theory and topological string in Nekrasov–Shatashvili limit. JHEP 1206, 152 (2012). arXiv:1205.3652 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  52. Huang, M.X., Klemm, A., Reuter, J., Schiereck, M.: Quantum geometry of del Pezzo surfaces in the Nekrasov–Shatashvili limit. JHEP 1502, 031 (2015). arXiv:1401.4723 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  53. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165, 311 (1994). arXiv:hep-th/9309140

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Gopakumar, R., Vafa, C.: M theory and topological strings. 2. arXiv:hep-th/9812127

  55. Iqbal, A., Kozcaz, C., Vafa, C.: The refined topological vertex. JHEP 0910, 069 (2009). arXiv:hep-th/0701156

    Article  ADS  MathSciNet  Google Scholar 

  56. Choi, J., Katz, S., Klemm, A.: The refined BPS index from stable pair invariants. Commun. Math. Phys. 328, 903 (2014). arXiv:1210.4403 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Nekrasov, N., Okounkov, A.: Membranes and sheaves. arXiv:1404.2323 [math.AG]

  58. Huang, M.X., Klemm, A.: Direct integration for general \(\Omega \) backgrounds. Adv. Theor. Math. Phys. 16(3), 805 (2012). arXiv:1009.1126 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  59. Eynard, B., Mariño, M.: A holomorphic and background independent partition function for matrix models and topological strings. J. Geom. Phys. 61, 1181 (2011). arXiv:0810.4273 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Aganagic, M., Bouchard, V., Klemm, A.: Topological strings and (almost) modular forms. Commun. Math. Phys. 277, 771 (2008). arXiv:hep-th/0607100

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Hatsuda, Y.: Spectral zeta function and non-perturbative effects in ABJM Fermi-gas. JHEP 1511, 086 (2015). arXiv:1503.07883 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  62. Faddeev, L.D., Kashaev, R.M.: Quantum dilogarithm. Mod. Phys. Lett. A 9, 427 (1994). arXiv:hep-th/9310070

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Garoufalidis, S., Kashaev, R.: Evaluation of state integrals at rational points. Commun. Number Theor. Phys. 09(3), 549 (2015). arXiv:1411.6062 [math.GT]

    Article  MathSciNet  MATH  Google Scholar 

  64. Faddeev, L.D.: Discrete Heisenberg-Weyl group and modular group. Lett. Math. Phys. 34, 249 (1995). arXiv:hep-th/9504111

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Fuji, H., Hirano, S., Moriyama, S.: Summing up all genus free energy of ABJM matrix model. JHEP 1108, 001 (2011). arXiv:1106.4631 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Alim, M., Yau, S.T., Zhou, J.: Airy equation for the topological string partition function in a scaling limit. Lett. Math. Phys. 106(6), 719 (2016). arXiv:1506.01375 [hep-th]

  67. Huang, M.X., Wang, X.F.: Topological strings and quantum spectral problems. JHEP 1409, 150 (2014). arXiv:1406.6178 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Ellegaard Andersen, J., Kashaev, R.: A TQFT from quantum Teichmüller theory. Commun. Math. Phys. 330, 887 (2014). arXiv:1109.6295 [math.QA]

  69. Mariño, M., Schiappa, R., Weiss, M.: Multi-instantons and multi-cuts. J. Math. Phys. 50, 052301 (2009). arXiv:0809.2619 [hep-th]

    Article  ADS  MATH  Google Scholar 

  70. Mohri, K., Onjo, Y., Yang, S.K.: Closed submonodromy problems, local mirror symmetry and branes on orbifolds. Rev. Math. Phys. 13, 675 (2001). arXiv:hep-th/0009072

    Article  MathSciNet  MATH  Google Scholar 

  71. Goncharov, A.B., Kenyon, R.: Dimers and cluster integrable systems. arXiv:1107.5588 [math.AG]

  72. Fock, V.V., Marshakov, A.: Loop groups, clusters, dimers and integrable systems. arXiv:1401.1606 [math.AG]

  73. Eager, R., Franco, S., Schaeffer, K.: Dimer models and integrable systems. JHEP 1206, 106 (2012). arXiv:1107.1244 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  74. Moriyama, S., Nosaka, T.: ABJM membrane instanton from pole cancellation mechanism. Phys. Rev. D 92(2), 026003 (2015). arXiv:1410.4918 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  75. Moriyama, S., Nosaka, T.: Exact instanton expansion of superconformal Chern–Simons theories from topological strings. JHEP 1505, 022 (2015). arXiv:1412.6243 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  76. Hatsuda, Y., Honda, M., Okuyama, K.: Large N non-perturbative effects in \({\cal{{N}}}=4\) superconformal Chern–Simons theories. JHEP 1509, 046 (2015). arXiv:1505.07120 [hep-th]

  77. Wang, X., Zhang, G., Huang, M.X.: New exact quantization condition for toric Calabi–Yau geometries. Phys. Rev. Lett. 115, 121601 (2015). arXiv:1505.05360 [hep-th]

    Article  ADS  Google Scholar 

  78. Hosono, S., Klemm, A., Theisen, S.: Lectures on mirror symmetry. Lect. Notes Phys. 436, 235 (1994). arXiv:hep-th/9403096

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Mariño.

Additional information

Communicated by B. Pioline.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Codesido, S., Grassi, A. & Mariño, M. Spectral Theory and Mirror Curves of Higher Genus. Ann. Henri Poincaré 18, 559–622 (2017). https://doi.org/10.1007/s00023-016-0525-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-016-0525-2

Navigation