Skip to main content

Advertisement

Log in

The role of post-translational modifications in hearing and deafness

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Post-translational modifications (PTMs) are key molecular events that modify proteins after their synthesis and modulate their ultimate functional properties by affecting their stability, localisation, interaction potential or activity. These chemical changes expand the size of the proteome adding diversity to the molecular pathways governing the biological outcome of cells. PTMs are, thus, crucial in regulating a variety of cellular processes such as apoptosis, proliferation and differentiation and have been shown to be instrumental during embryonic development. In addition, alterations in protein PTMs have been implicated in the pathogenesis of many human diseases, including deafness. In this review, we summarize the recent progress made in understanding the roles of PTMs during cochlear development, with particular emphasis on the enzymes driving protein phosphorylation, acetylation, methylation, glycosylation, ubiquitination and SUMOylation. We also discuss how these enzymes may contribute to hearing impairment and deafness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABR:

Auditory brainstem response

ADP:

Adenosine diphosphate

Ac-CoA:

Acetyl-coenzyme A

ALG10B:

Alpha-1,2-glucosyltransferase

ARHL:

Age-related hearing loss

Atoh1:

Protein atonal homolog 1

ATP:

Adénosine triphosphate

Aos1/Uba2:

Ubiquitin-like 1-activating enzyme E1B

CBP:

CREB-binding protein

CREB:

cAMP-responsive element binding protein

Cx26:

Connexin-26

DFNB61:

Autosomal recessive deafness-61

DNA:

Deoxyribonucleic acid

DUBs:

Deubiquitinating enzymes

E1:

Ubiquitin activating enzyme

E2:

Ubiquitin conjugating enzyme

E3:

Ubiquitin ligase

ERK1/2:

Extracellular signal-regulated kinases 1/2

ERM:

Ezrin, radixin and moesin proteins

Fbx2:

F-Box protein 2 (also called Fbs1 or OCP1)

FGF:

Fibroblast growth factor

GCN5:

General control nonderepressible

GJP2:

Gap junction protein type 2

GPI:

Glycosylphosphatidylinositol

GTP:

Guanosine triphosphate

H3K9:

Histone H3 lysine 9

HCs:

Hair cells

IDH2:

Isocitrate dehydrogenase

IHCs:

Inner hair cells

JAB1:

Jun activation domain-binding protein 1

JAMMs:

JAB1/MPN/MOV34 metalloenzymes

JNK:

c-Jun N-terminal kinase

KATs:

Lysine acetyl-transferases

KDACi:

Lysine deacetylases inhibitors

KDACs:

Lysine deacetylases

KDMs:

Histones lysine demethylation enzymes

KDM4B:

Lysine (K)-specific demethylase 4B (also called jumonjiD2)

LKB1:

Liver serine/threonine kinase B1

MAP3K1:

Mitogen-activated protein kinase kinase kinase 1

MAP3K4:

Mitogen-activated protein kinase kinase kinase 4 (also called MEKK4)

MAP3K7:

Mitogen-activated protein kinase kinase kinase 7 (also called Tak1)

MAPK:

Mitogen-activated protein kinase

MOV34:

Proteasome 26S subunit, non-ATPase 7 (PSMD7)

MPN:

MPR1/PAD1 N-terminal

MPR1:

sigMa 1278b gene for l-proline-analog resistance

mRNA:

Messenger ribonucleic acid

MYST:

Named for the founding members MOZ, YBF2, SAS2 and TIP60

NAD:

Nicotinamide adenine dinucleotide

NADPH:

Nicotinamide adenine dinucleotide phosphate-oxidase

NEDD8:

Neural precursor cell expressed, developmentally down-regulated 8

NF-κB:

Nuclear factor-kappa B

OCP1:

Organ of corti protein 1 (also called Fbs1 or Fbx2)

OHCs:

Outer hair cells

OTUs:

Ovarian tumor proteases

PAD1:

Protein-arginine deiminase 1

PCAF:

p300/CBP-associated factor

PCP:

Planar cell polarity

Pk:

Prickle1

PKMT:

Protein lysine methyl transferases

PRMT:

Protein arginine methyl transferases

PTK7:

Protein tyrosine kinase 7

PTMs:

Post-translational modifications

RhoA Ras:

Homolog gene family, member A

ROCK1/2:

Rho-associated protein kinase 1/2

SAH:

S-Adenosyl homocysteine

SAM:

S-Adenosyl methionine

SCs:

Supporting cells

SCF:

SKP1-cullin-F-box

Scr:

Proto-oncogene tyrosine-protein kinase

SGN:

Spiral ganglion neurons

SLC26A4:

Solute carrier family 26 (anion exchanger), member 4

SLC26A5:

Solute carrier family 26 (anion exchanger), member 4

SMAD:

Homologs of the Drosophila protein, mothers against decapentaplegic (MAD)

Smurf1/2:

SMAD specific E3 ubiquitin protein ligase 1/2

SUMO:

Small Ubiquitin-like MOdifier

UBC9:

UBiquitin-conjugating 9

UCHs:

Ubiquitin C-terminal hydrolases

Usp53:

Ubiquitin-specific protease 53

USPs:

Ubiquitin-specific proteases

Wnt:

Wingless-related integration site

References

  1. Okamoto S, Lipton SA (2015) S-Nitrosylation in neurogenesis and neuronal development. Biochim Biophys Acta 1850:1588–1593. doi:10.1016/j.bbagen.2014.12.013

    Article  CAS  PubMed  Google Scholar 

  2. McDowell GS, Hindley CJ, Lippens G et al (2014) Phosphorylation in intrinsically disordered regions regulates the activity of Neurogenin2. BMC Biochem 15:24. doi:10.1186/s12858-014-0024-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. You L, Yan K, Zou J et al (2015) Correction: the lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors. PLoS Genet 11:e1005329. doi:10.1371/journal.pgen.1005329

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ham SJ, Lee SY, Song S et al (2015) Interaction between RING1 (R1) and ubiquitin-like (UBL) domain is critical for the regulation of Parkin activity. J Biol Chem. doi:10.1074/jbc.M115.687319

    PubMed  Google Scholar 

  5. Niceta M, Stellacci E, Gripp KW et al (2015) Mutations impairing GSK3-mediated MAF phosphorylation cause cataract, deafness, intellectual disability, seizures, and a down syndrome-like facies. Am J Hum Genet 96:816–825. doi:10.1016/j.ajhg.2015.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hanks SK, Hunter T (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 9:576–596

    CAS  PubMed  Google Scholar 

  7. Zhang ZY (2002) Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu Rev Pharmacol Toxicol 42:209–234

    Article  CAS  PubMed  Google Scholar 

  8. Mumby MC, Walter G (1993) Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev 73:673–699

    CAS  PubMed  Google Scholar 

  9. Mawatari T, Ninomiya I, Inokuchi M et al (2015) Valproic acid inhibits proliferation of HER2-expressing breast cancer cells by inducing cell cycle arrest and apoptosis through Hsp70 acetylation. Int J Oncol 47:2073–2081. doi:10.3892/ijo.2015.3213

    PubMed  PubMed Central  Google Scholar 

  10. Arboleda VA, Lee H, Dorrani N et al (2015) De novo nonsense mutations in KAT6A, a lysine acetyl-transferase gene, cause a syndrome including microcephaly and global developmental delay. Am J Hum Genet 96:498–506. doi:10.1016/j.ajhg.2015.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen S, Yao X, Li Y et al (2015) Histone deacetylase 1 and 2 regulate Wnt and p53 pathways in the ureteric bud epithelium. Development 142:1180–1192. doi:10.1242/dev.113506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mortenson JB, Heppler LN, Banks CJ et al (2015) Histone deacetylase 6 (HDAC6) promotes the pro-survival activity of 14-3-3ζ via deacetylation of lysines within the 14-3-3ζ binding pocket. J Biol Chem 290:12487–12496. doi:10.1074/jbc.M114.607580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olson DE, Sleiman SF, Bourassa MW et al (2015) Hydroxamate-based histone deacetylase inhibitors can protect neurons from oxidative stress via a histone deacetylase-independent catalase-like mechanism. Chem Biol 22:439–445. doi:10.1016/j.chembiol.2015.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Damaskos C, Karatzas T, Nikolidakis L et al (2015) Histone deacetylase (HDAC) inhibitors: current evidence for therapeutic activities in pancreatic cancer. Anticancer Res 35:3129–3135

    CAS  PubMed  Google Scholar 

  15. Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840. doi:10.1126/science.1175371

    Article  CAS  PubMed  Google Scholar 

  16. Allis CD, Berger SL, Cote J et al (2007) New nomenclature for chromatin-modifying enzymes. Cell 131:633–636. doi:10.1016/j.cell.2007.10.039

    Article  CAS  PubMed  Google Scholar 

  17. Li T, Du Y, Wang L et al (2012) Characterization and prediction of lysine (K)-acetyl-transferase specific acetylation sites. Mol Cell Proteomics 11(M111):011080. doi:10.1074/mcp.M111.011080

    PubMed  Google Scholar 

  18. Dokmanovic M, Clarke CMP (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5(10):981–989

    Article  CAS  PubMed  Google Scholar 

  19. de Ruijter AJM, van Gennip AH, Caron HN et al (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749. doi:10.1042/BJ20021321

    Article  PubMed  PubMed Central  Google Scholar 

  20. Marks PA, Xu W-S (2009) Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem 107:600–608. doi:10.1002/jcb.22185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705. doi:10.1016/j.cell.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  22. Tessarz P, Kouzarides T (2014) Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol 15:703–708. doi:10.1038/nrm3890

    Article  CAS  PubMed  Google Scholar 

  23. Watanabe K-I, Bloch W (2013) Histone methylation and acetylation indicates epigenetic change in the aged cochlea of mice. Eur Arch Otorhinolaryngol 270:1823–1830. doi:10.1007/s00405-012-2222-1

    Article  PubMed  Google Scholar 

  24. Leroy JG (2006) Congenital disorders of N-glycosylation including diseases associated with O- as well as N-glycosylation defects. Pediatr Res 60:643–656. doi:10.1203/01.pdr.0000246802.57692.ea

    Article  CAS  PubMed  Google Scholar 

  25. Wolfe LA, Krasnewich D (2013) Congenital disorders of glycosylation and intellectual disability. Dev Disabil Res Rev 17:211–225. doi:10.1002/ddrr.1115

    Article  PubMed  Google Scholar 

  26. Varki A, Cummings RD, Esko JD et al (2009) Essentials of glycobiology

  27. Feizi T, Haltiwanger RS (2015) Editorial overview: carbohydrate-protein interactions and glycosylation: glycan synthesis and recognition: finding the perfect partner in a sugar-coated life. Curr Opin Struct Biol. doi:10.1016/j.sbi.2015.10.005

    PubMed  Google Scholar 

  28. Freeze HH (2006) Genetic defects in the human glycome. Nat Rev Genet 7:537–551. doi:10.1038/nrg1894

    Article  CAS  PubMed  Google Scholar 

  29. Freeze HH (2013) Understanding human glycosylation disorders: biochemistry leads the charge. J Biol Chem 288:6936–6945. doi:10.1074/jbc.R112.429274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Freeze HH, Eklund EA, Ng BG, Patterson MC (2015) Neurological aspects of human glycosylation disorders. Annu Rev Neurosci 38:105–125. doi:10.1146/annurev-neuro-071714-034019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Freeze HH, Sharma V (2010) Metabolic manipulation of glycosylation disorders in humans and animal models. Semin Cell Dev Biol 21:655–662. doi:10.1016/j.semcdb.2010.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Davis ME, Gack MU (2015) Ubiquitination in the antiviral immune response. Virology 479–480:52–65. doi:10.1016/j.virol.2015.02.033

    Article  PubMed  CAS  Google Scholar 

  33. Shan H, Lingqiang Z (2015) Research progress in linear ubiquitin modification. Yi Chuan 37:911–917. doi:10.16288/j.yczz.15-214

    PubMed  Google Scholar 

  34. Shao S, Hegde RS (2015) Target selection during protein quality control. Trends Biochem Sci. doi:10.1016/j.tibs.2015.10.007

    PubMed  Google Scholar 

  35. Wang F, Canadeo LA, Huibregtse JM (2015) Ubiquitination of newly synthesized proteins at the ribosome. Biochimie 114:127–133. doi:10.1016/j.biochi.2015.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kimura Y, Tanaka K (2010) Regulatory mechanisms involved in the control of ubiquitin homeostasis. J Biochem 147:793–798. doi:10.1093/jb/mvq044

    Article  CAS  PubMed  Google Scholar 

  37. Komander D, Clague MJ, Urbé S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10:550–563. doi:10.1038/nrm2731

    Article  CAS  PubMed  Google Scholar 

  38. Nelson RF, Glenn KA, Zhang Y et al (2007) Selective cochlear degeneration in mice lacking the F-box protein, Fbx2, a glycoprotein-specific ubiquitin ligase subunit. J Neurosci 27:5163–5171. doi:10.1523/JNEUROSCI.0206-07.2007

    Article  CAS  PubMed  Google Scholar 

  39. Kazmierczak M, Harris SL, Kazmierczak P et al (2015) Progressive hearing loss in mice carrying a mutation in Usp53. J Neurosci 35:15582–15598. doi:10.1523/JNEUROSCI.1965-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Narimatsu M, Bose R, Pye M et al (2009) Regulation of Planar cell polarity by Smurf ubiquitin ligases. Cell 137:295–307. doi:10.1016/j.cell.2009.02.025

    Article  CAS  PubMed  Google Scholar 

  41. Hay RT (2005) SUMO. Mol Cell 18:1–12. doi:10.1016/j.molcel.2005.03.012

    Article  CAS  PubMed  Google Scholar 

  42. Nuro-Gyina PK, Parvin JD (2015) Roles for SUMO in pre-mRNA processing. Wiley Interdiscip Rev RNA. doi:10.1002/wrna.1318

    PubMed  Google Scholar 

  43. Enserink JM (2015) Sumo and the cellular stress response. Cell Div 10:4. doi:10.1186/s13008-015-0010-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sarangi P, Zhao X (2015) SUMO-mediated regulation of DNA damage repair and responses. Trends Biochem Sci 40:233–242. doi:10.1016/j.tibs.2015.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Basch ML, Brown RM, Jen H-I, Groves AK (2015) Where hearing starts: the development of the mammalian cochlea. J Anat. doi:10.1111/joa.12314

    PubMed  PubMed Central  Google Scholar 

  46. Sai X, Ladher RK (2015) Early steps in inner ear development: induction and morphogenesis of the otic placode. Front Pharmacol 6:19. doi:10.3389/fphar.2015.00019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Fuchs JC, Tucker AS (2015) Development and integration of the ear. Curr Top Dev Biol 115:213–232. doi:10.1016/bs.ctdb.2015.07.007

    Article  PubMed  Google Scholar 

  48. Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101. doi:10.1146/annurev.neuro.25.112701.142849

    Article  CAS  PubMed  Google Scholar 

  49. Uribe RA, Buzzi AL, Bronner ME, Strobl-Mazzulla PH (2015) Histone demethylase KDM4B regulates otic vesicle invagination via epigenetic control of Dlx3 expression. J Cell Biol 211:815–827. doi:10.1083/jcb.201503071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. He Y, Tang D, Li W et al (2016) Histone deacetylase 1 is required for the development of the zebrafish inner ear. Sci Rep 6:16535. doi:10.1038/srep16535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sai X, Yonemura S, Ladher RK (2014) Junctionally restricted RhoA activity is necessary for apical constriction during phase 2 inner ear placode invagination. Dev Biol 394:206–216. doi:10.1016/j.ydbio.2014.08.022

    Article  CAS  PubMed  Google Scholar 

  52. Taylor KM, Labonne C (2005) SoxE factors function equivalently during neural crest and inner ear development and their activity is regulated by SUMOylation. Dev Cell 9:593–603. doi:10.1016/j.devcel.2005.09.016

    Article  CAS  PubMed  Google Scholar 

  53. Betancur P, Sauka-Spengler T, Bronner M (2011) A Sox10 enhancer element common to the otic placode and neural crest is activated by tissue-specific paralogs. Development 138:3689–3698. doi:10.1242/dev.057836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bouchard M, de Caprona D, Busslinger M et al (2010) Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev Biol 10:89. doi:10.1186/1471-213X-10-89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Yousaf R, Meng Q, Hufnagel RB et al (2015) MAP3K1 function is essential for cytoarchitecture of the mouse organ of Corti and survival of auditory hair cells. Dis Model Mech 8:1543–1553. doi:10.1242/dmm.023077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Parker A, Cross SH, Jackson IJ et al (2015) The goya mouse mutant reveals distinct newly identified roles for MAP3K1 in the development and survival of cochlear sensory hair cells. Dis Model Mech 8:1555–1568. doi:10.1242/dmm.023176

    Article  PubMed  PubMed Central  Google Scholar 

  57. Haque K, Pandey AK, Zheng H-W et al (2016) MEKK4 signaling regulates sensory cell development and function in the mouse inner ear. J Neurosci 36:1347–1361. doi:10.1523/JNEUROSCI.1853-15.2016

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mann ZF, Thiede BR, Chang W et al (2014) A gradient of Bmp7 specifies the tonotopic axis in the developing inner ear. Nat Commun 5:3839. doi:10.1038/ncomms4839

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Andreeva A, Lee J, Lohia M et al (2014) PTK7-Src signaling at epithelial cell contacts mediates spatial organization of actomyosin and planar cell polarity. Dev Cell 29:20–33. doi:10.1016/j.devcel.2014.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Men Y, Zhang A, Li H et al (2015) LKB1 Is Required for the development and maintenance of stereocilia in inner ear hair cells in mice. PLoS One 10:e0135841. doi:10.1371/journal.pone.0135841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Izzi L, Attisano L (2006) Ubiquitin-dependent regulation of TGFbeta signaling in cancer. Neoplasia 8:677–688. doi:10.1593/neo.06472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stojanova ZP, Kwan T, Segil N (2015) Epigenetic regulation of Atoh1 guides hair cell development in the mammalian cochlea. Development 142:3529–3536. doi:10.1242/dev.126763

    Article  CAS  PubMed  Google Scholar 

  63. Alagramam KN, Stepanyan R, Jamesdaniel S et al (2014) Noise exposure immediately activates cochlear mitogen-activated protein kinase signaling. Noise Health 16:400–409. doi:10.4103/1463-1741.144418

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shin YS, Hwang HS, Kang SU et al (2014) Inhibition of p38 mitogen-activated protein kinase ameliorates radiation-induced ototoxicity in zebrafish and cochlea-derived cell lines. Neurotoxicology 40:111–122. doi:10.1016/j.neuro.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  65. Maeda Y, Fukushima K, Omichi R et al (2013) Time courses of changes in phospho- and total-MAP kinases in the cochlea after intense noise exposure. PLoS One 8:e58775. doi:10.1371/journal.pone.0058775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kurioka T, Matsunobu T, Satoh Y et al (2015) ERK2 mediates inner hair cell survival and decreases susceptibility to noise-induced hearing loss. Sci Rep 5:16839. doi:10.1038/srep16839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu J, Sun S, Li W et al (2014) pRb phosphorylation regulates the proliferation of supporting cells in gentamicin-damaged neonatal avian utricle. Neuroreport 25:1144–1150. doi:10.1097/WNR.0000000000000241

    Article  CAS  PubMed  Google Scholar 

  68. Wang J, Ruel J, Ladrech S et al (2007) Inhibition of the c-Jun N-terminal kinase-mediated mitochondrial cell death pathway restores auditory function in sound-exposed animals. Mol Pharmacol 71:654–666. doi:10.1124/mol.106.028936

    Article  CAS  PubMed  Google Scholar 

  69. Nagashima R, Yamaguchi T, Tanaka H, Ogita K (2010) Mechanism underlying the protective effect of tempol and Nω-nitro-l-arginine methyl ester on acoustic injury: possible involvement of c-Jun N-terminal kinase pathway and connexin26 in the cochlear spiral ligament. J Pharmacol Sci 114:50–62

    Article  CAS  PubMed  Google Scholar 

  70. Dragunow M, Young D, Hughes P et al (1993) Is c-Jun involved in nerve cell death following status epilepticus and hypoxic-ischaemic brain injury? Brain Res Mol Brain Res 18:347–352

    Article  CAS  PubMed  Google Scholar 

  71. Eshraghi AA, Wang J, Adil E et al (2007) Blocking c-Jun-N-terminal kinase signaling can prevent hearing loss induced by both electrode insertion trauma and neomycin ototoxicity. Hear Res 226:168–177. doi:10.1016/j.heares.2006.09.008

    Article  CAS  PubMed  Google Scholar 

  72. Coleman JKM, Littlesunday C, Jackson R, Meyer T (2007) AM-111 protects against permanent hearing loss from impulse noise trauma. Hear Res 226:70–78. doi:10.1016/j.heares.2006.05.006

    Article  CAS  PubMed  Google Scholar 

  73. Omotehara Y, Hakuba N, Hato N et al (2011) Protection against ischemic cochlear damage by intratympanic administration of AM-111. Otol Neurotol 32:1422–1427. doi:10.1097/MAO.0b013e3182355658

    Article  PubMed  Google Scholar 

  74. Tabuchi K, Oikawa K, Hoshino T et al (2010) Cochlear protection from acoustic injury by inhibitors of p38 mitogen-activated protein kinase and sequestosome 1 stress protein. Neuroscience 166:665–670. doi:10.1016/j.neuroscience.2009.12.038

    Article  CAS  PubMed  Google Scholar 

  75. Wei X, Zhao L, Liu J et al (2005) Minocycline prevents gentamicin-induced ototoxicity by inhibiting p38 MAP kinase phosphorylation and caspase 3 activation. Neuroscience 131:513–521. doi:10.1016/j.neuroscience.2004.11.014

    Article  CAS  PubMed  Google Scholar 

  76. Han Y, Wang X, Chen J, Sha S-H (2015) Noise-induced cochlear F-actin depolymerization is mediated via ROCK2/p-ERM signaling. J Neurochem 133:617–628. doi:10.1111/jnc.13061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen F-Q, Zheng H-W, Hill K, Sha S-H (2012) Traumatic noise activates Rho-family GTPases through transient cellular energy depletion. J Neurosci 32:12421–12430. doi:10.1523/JNEUROSCI.6381-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jiang H, Sha S-H, Schacht J (2006) Kanamycin alters cytoplasmic and nuclear phosphoinositide signaling in the organ of Corti in vivo. J Neurochem 99:269–276. doi:10.1111/j.1471-4159.2006.04117.x

    Article  CAS  PubMed  Google Scholar 

  79. Chen FQ, Schacht J, Sha SH (2009) Aminoglycoside-induced histone deacetylation and hair cell death in the mouse cochlea. J Neurochem 108:1226–1236. doi:10.1111/j.1471-4159.2009.05871.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang J, Wang Y, Chen X et al (2015) Histone deacetylase inhibitor sodium butyrate attenuates gentamicin-induced hearing loss in vivo. Am J Otolaryngol 36:242–248. doi:10.1016/j.amjoto.2014.11.003

    Article  PubMed  Google Scholar 

  81. Layman WS, Williams DM, Dearman JA et al (2015) Histone deacetylase inhibition protects hearing against acute ototoxicity by activating the Nf-κB pathway. Cell death Discov. doi:10.1038/cddiscovery.2015.12

    PubMed  PubMed Central  Google Scholar 

  82. Xiong H, Pang J, Yang H et al (2015) Activation of miR-34a/SIRT1/p53 signaling contributes to cochlear hair cell apoptosis: implications for age-related hearing loss. Neurobiol Aging 36:1692–1701. doi:10.1016/j.neurobiolaging.2014.12.034

    Article  CAS  PubMed  Google Scholar 

  83. Wang P, Du B, Yin W et al (2013) Resveratrol attenuates CoCl2-induced cochlear hair cell damage through upregulation of Sirtuin1 and NF-κB deacetylation. PLoS One 8:e80854. doi:10.1371/journal.pone.0080854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Someya S, Yu W, Hallows WC et al (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143:802–812. doi:10.1016/j.cell.2010.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Han C, Someya S (2013) Maintaining good hearing: calorie restriction, Sirt3, and glutathione. Exp Gerontol 48:1091–1095. doi:10.1016/j.exger.2013.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Davie JR (2003) Inhibition of histone deacetylase activity by butyrate. J Nutr 133:2485S–2493S

    CAS  PubMed  Google Scholar 

  87. Gross J, Stute K, Fuchs J et al (2011) Effects of retinoic acid and butyric acid on the expression of prestin and Gata-3 in organotypic cultures of the organ of corti of newborn rats. Dev Neurobiol 71:650–661. doi:10.1002/dneu.20881

    Article  CAS  PubMed  Google Scholar 

  88. Slattery EL, Speck JD, Warchol ME (2009) Epigenetic influences on sensory regeneration: histone deacetylases regulate supporting cell proliferation in the avian utricle. JARO J Assoc Res Otolaryngol 10:341–353. doi:10.1007/s10162-009-0166-y

    Article  PubMed  Google Scholar 

  89. Yu H, Lin Q, Wang Y et al (2013) Inhibition of H3K9 methyltransferases G9a/GLP prevents ototoxicity and ongoing hair cell death. Cell Death Dis 4:e506. doi:10.1038/cddis.2013.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Reardon W, Trembath RC (1996) Pendred syndrome. J Med Genet 33:1037–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Royaux IE, Suzuki K, Mori A et al (2000) Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology 141:839–845. doi:10.1210/endo.141.2.7303

    Article  CAS  PubMed  Google Scholar 

  92. Azroyan A, Laghmani K, Crambert G et al (2011) Regulation of pendrin by pH: dependence on glycosylation. Biochem J 434:61–72. doi:10.1042/BJ20101411

    Article  CAS  PubMed  Google Scholar 

  93. Ben Rebeh I, Yoshimi N, Hadj-Kacem H et al (2010) Two missense mutations in SLC26A4 gene: a molecular and functional study. Clin Genet 78:74–80. doi:10.1111/j.1399-0004.2009.01360.x

    Google Scholar 

  94. Yoon JS, Park H-J, Yoo S-Y et al (2008) Heterogeneity in the processing defect of SLC26A4 mutants. J Med Genet 45:411–419. doi:10.1136/jmg.2007.054635

    Article  CAS  PubMed  Google Scholar 

  95. Saihan Z, Webster AR, Luxon L, Bitner-Glindzicz M (2009) Update on Usher syndrome. Curr Opin Neurol 22:19–27

    Article  PubMed  Google Scholar 

  96. Tian G, Zhou Y, Hajkova D et al (2009) Clarin-1, encoded by the Usher syndrome III causative gene, forms a membranous microdomain: possible role of clarin-1 in organizing the actin cytoskeleton. J Biol Chem 284:18980–18993. doi:10.1074/jbc.M109.003160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kremer H, van Wijk E, Märker T et al (2006) Usher syndrome: molecular links of pathogenesis, proteins and pathways. Hum Mol Genet 15 Spec No:R262–R270. doi:10.1093/hmg/ddl205

    Article  CAS  Google Scholar 

  98. Gopal SR, Chen DH-C, Chou S-W et al (2015) Zebrafish models for the mechanosensory hair cell dysfunction in Usher syndrome 3 reveal that Clarin-1 Is an essential hair bundle protein. J Neurosci 35:10188–10201. doi:10.1523/JNEUROSCI.1096-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Matsuda K, Zheng J, Du G-G et al (2004) N-linked glycosylation sites of the motor protein prestin: effects on membrane targeting and electrophysiological function. J Neurochem 89:928–938. doi:10.1111/j.1471-4159.2004.02377.x

    Article  CAS  PubMed  Google Scholar 

  100. Rajagopalan L, Organ-Darling LE, Liu H et al (2010) Glycosylation regulates prestin cellular activity. J Assoc Res Otolaryngol 11:39–51. doi:10.1007/s10162-009-0196-5

    Article  PubMed  Google Scholar 

  101. Dawson PA, Markovich D (2005) Pathogenetics of the human SLC26 transporters. Curr Med Chem 12:385–396

    Article  CAS  PubMed  Google Scholar 

  102. Probst FJ, Corrigan RR, Del Gaudio D et al (2013) A point mutation in the gene for asparagine-linked glycosylation 10B (Alg10b) causes nonsyndromic hearing impairment in mice (Mus musculus). PLoS One 8:e80408. doi:10.1371/journal.pone.0080408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Locke D, Bian S, Li H, Harris AL (2009) Post-translational modifications of connexin26 revealed by mass spectrometry. Biochem J 424:385–398. doi:10.1042/BJ20091140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Henzl MT, Thalmann I, Larson JD et al (2004) The cochlear F-box protein OCP1 associates with OCP2 and connexin 26. Hear Res 191:101–109. doi:10.1016/j.heares.2004.01.005

    Article  CAS  PubMed  Google Scholar 

  105. Brown JS, Jackson SP (2015) Ubiquitylation, neddylation and the DNA damage response. Open Biol 5:150018. doi:10.1098/rsob.150018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Curtis VF, Ehrentraut SF, Colgan SP (2015) Actions of adenosine on cullin neddylation: implications for inflammatory responses. Comput Struct Biotechnol J 13:273–276. doi:10.1016/j.csbj.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  107. Choo YS, Vogler G, Wang D et al (2012) Regulation of parkin and PINK1 by neddylation. Hum Mol Genet 21:2514–2523. doi:10.1093/hmg/dds070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bütepage M, Eckei L, Verheugd P, Lüscher B (2015) Intracellular mono-ADP-ribosylation in signaling and disease. Cells 4:569–595. doi:10.3390/cells4040569

    Article  PubMed  PubMed Central  Google Scholar 

  109. Basello DA, Scovassi AI (2015) Poly(ADP-ribosylation) and neurodegenerative disorders. Mitochondrion 24:56–63. doi:10.1016/j.mito.2015.07.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

BM is Research Director from the Belgian National Funds for Scientific Research (FNRS). This work was supported by Grants from the FSR-FNRS, the Fonds Léon Fredericq, the Fondation Médicale Reine Elisabeth, and the Belgian Science Policy (IAP-VII network P7/07). We thank Bernard Minguet for his assistance with Fig. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Malgrange.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mateo Sánchez, S., Freeman, S.D., Delacroix, L. et al. The role of post-translational modifications in hearing and deafness. Cell. Mol. Life Sci. 73, 3521–3533 (2016). https://doi.org/10.1007/s00018-016-2257-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2257-3

Keywords

Navigation