Skip to main content

Advertisement

Log in

Role of microRNAs in sepsis

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Introduction

MicroRNAs have been found to be of high significance in the regulation of various genes and processes in the body. Sepsis is a serious clinical problem which arises due to the excessive host inflammatory response to infection. The non-specific clinical features and delayed diagnosis of sepsis has been a matter of concern for long time.

Findings

MicroRNAs could enable better diagnosis of sepsis and help in the identification of the various stages of sepsis. Improved diagnosis may enable quicker and more effective treatment measures. The initial acute and transient phase of sepsis involves excessive secretion of pro-inflammatory cytokines which causes severe damage. MicroRNAs negatively regulate the toll-like receptor signaling pathway and regulate the production of inflammatory cytokines during sepsis. Likewise, microRNAs have shown to regulate the vascular barrier and endothelial function in sepsis. They are also involved in the regulation of the apoptosis, immunosuppression, and organ dysfunction in later stages of sepsis. Their importance at various levels of the pathophysiology of sepsis has been discussed along with the challenges and future perspectives.

Conclusion

MicroRNAs could be key players in the diagnosis and staging of sepsis. Their regulation at various stages of sepsis suggests that they may have an important role in altering the outcome associated with sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610.

    CAS  PubMed  Google Scholar 

  3. Essandoh K, Fan GC. Role of extracellular and intracellular microRNAs in sepsis. Biochim Biophys Acta. 2014;1842:2155–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115:787–98.

    Article  CAS  PubMed  Google Scholar 

  5. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

    Article  CAS  PubMed  Google Scholar 

  6. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  CAS  PubMed  Google Scholar 

  7. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–6.

    Article  CAS  PubMed  Google Scholar 

  8. Johnston RJ, Hobert O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature. 2003;426:845–9.

    Article  CAS  PubMed  Google Scholar 

  9. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005;6:376–85.

    Article  CAS  PubMed  Google Scholar 

  10. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–6.

    Article  CAS  PubMed  Google Scholar 

  11. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113:25–36.

    Article  CAS  PubMed  Google Scholar 

  12. Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 2004;304:594–6.

    Article  CAS  PubMed  Google Scholar 

  13. Perron MP, Boissonneault V, Gobeil LA, Ouellet DL, Provost P. Regulatory RNAs: future perspectives in diagnosis, prognosis, and individualized therapy. Methods Mol Biol. 2007;361:311–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hsieh CH, Yang JC, Jeng JC, Chen YC, Lu TH, Tzeng SL, et al. Circulating microRNA signatures in mice exposed to lipoteichoic acid. J Biomed Sci. 2013;20:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vincent JL, Opal SM, Marshall JC, Tracey KJ. Sepsis definitions: time for change. Lancet. 2013;381:774–5.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10.

    Article  CAS  PubMed  Google Scholar 

  17. Martin GS, Mannino DM, Moss M. The effect of age on the development and outcome of adult sepsis. Crit Care Med. 2006;34:15–21.

    Article  PubMed  Google Scholar 

  18. Angus DC, Van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369:840–51.

    Article  CAS  PubMed  Google Scholar 

  19. Zilberberg MD, Shorr AF, Micek ST, Vazquez-Guillamet C, Kollef MH. Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: a retrospective cohort study. Crit Care. 2014;18:596.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Reinhart K, Karzai W. Anti-tumor necrosis factor therapy in sepsis: update on clinical trials and lessons learned. Crit Care Med. 2001;29:S121–5.

    Article  CAS  PubMed  Google Scholar 

  21. Remick DG. Pathophysiology of sepsis. Am J Pathol. 2007;170:1435–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis. Virulence. 2014;5:4–11.

    Article  PubMed  Google Scholar 

  23. Al-Zahrani Akh, Ghonaim MM, Hussein YM, Eed EM, Khalifa AS, Dorgham LS. Evaluation of recent methods versus conventional methods for diagnosis of early-onset neonatal sepsis. J Infect Dev Ctries. 2015;9:388–93.

    Google Scholar 

  24. ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20:864–74.

  25. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med. 2003;31:1250–6.

    Article  PubMed  Google Scholar 

  26. Sankar V, Webster NR. Clinical application of sepsis biomarkers. J Anesth. 2013;27:269–83.

    Article  PubMed  Google Scholar 

  27. Tang BM, Eslick GD, Craig JC, McLean AS. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect Dis. 2007;7:210–7.

    Article  CAS  PubMed  Google Scholar 

  28. Kollef MH. Broad spectrum antimicrobials and the treatment of serious bacterial infections: getting it right up front. Clin Infect Dis. 2008;47:S3–13.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou J, Chaudhry H, Zhong Y, Ali MM, Perkins LA, Owens WB, et al. Dysregulation in microRNA expression in peripheral blood mononuclear cells of sepsis patients is associated with immunopathology. Cytokine. 2015;71:89–100.

    Article  CAS  PubMed  Google Scholar 

  30. Han Y, Dai QC, Shen HL, Zhang XW. Diagnostic value of elevated serum miRNA-143 levels in sepsis. J Int Med Res. 2016;44:875–81.

    Article  CAS  PubMed  Google Scholar 

  31. Vasilescu C, Rossi S, Shimizu M, Tudor S, Veronese A, Ferracin M, et al. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PloS One. 2009;4:e7405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ma Y, Vilanova D, Atalar K, Delfour O, Edgeworth J, Ostermann M, et al. Genome-wide sequencing of cellular microRNAs identifies a combinatorial expression signature diagnostic of sepsis. PloS One. 2013;8:e75918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roderburg C, Luedde M, Cardenas DV, Vucur M, Scholten D, Frey N, et al. Circulating microRNA-150 serum levels predict survival in patients with critical illness and sepsis. PloS One. 2013;8:e54612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang H, Zhang P, Chen W, Feng D, Jia Y, Xie L. Serum microRNA signatures identified by Solexa sequencing predict sepsis patients’ mortality: a prospective observational study. PLoS One. 2012;7:e38885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang H, Meng K, Chen WJ, Feng D, Jia Y, Xie L. Serum miR-574-5p: a prognostic predictor of sepsis patients. Shock. 2012;37:263–7.

    Article  CAS  PubMed  Google Scholar 

  36. Huang J, Sun Z, Yan W, Zhu Y, Lin Y, Chen J, et al. Identification of microRNA as sepsis biomarker based on miRNAs regulatory network analysis. Biomed Res Int. 2014;2014:594350.

    PubMed  PubMed Central  Google Scholar 

  37. Wang X, Wang X, Liu X, Wang X, Xu J, Hou S, et al. miR-15a/16 are upregulated in the serum of neonatal sepsis patients and inhibit the LPS-induced inflammatory pathway. Int J Clin Exp Med. 2015;8:5683–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang HJ, Zhang PJ, Chen WJ, Feng D, Jia YH, Xie LX. Four serum microRNAs identified as diagnostic biomarkers of sepsis. J Trauma Acute Care Surg. 2012;73:850–4.

    Article  CAS  PubMed  Google Scholar 

  39. Wang JF, Yu ML, Yu G, Bian JJ, Deng XM, Wan XJ, et al. Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem Biophys Res Commun. 2010;394:184–8.

    Article  CAS  PubMed  Google Scholar 

  40. Wang L, Wang HC, Chen C, Zeng J, Wang Q, Zheng L, et al. Differential expression of plasma miR-146a in sepsis patients compared with non-sepsis-SIRS patients. Exp Ther Med. 2013;5:1101–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Benz F, Tacke F, Luedde M, Trautwein C, Luedde T, Koch A, et al. Circulating microRNA-223 serum levels do not predict sepsis or survival in patients with critical illness. Dis Markers. 2015;2015:384208.

    Google Scholar 

  42. Yao L, Liu Z, Zhu J, Li B, Chai C, Tian Y. Clinical evaluation of circulating microRNA-25 level change in sepsis and its potential relationship with oxidative stress. Int J Clin Exp Pathol. 2015;8:7675–84.

    PubMed  PubMed Central  Google Scholar 

  43. Sun X, Icli B, Wara AK, Belkin N, He S, Kobzik L, et al. MicroRNA-181b regulates NF-κB–mediated vascular inflammation. J Clin Invest. 2012;122:1973–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cui YL, Wang B, Gao HM, Xing YH, Li J, Li HJ, et al. Interleukin-18 and miR-130a in severe sepsis patients with thrombocytopenia. Patient Prefer Adherence. 2016;10:313–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li Y, Dalli J, Chiang N, Baron RM, Quintana C, Serhan CN. Plasticity of leukocytic exudates in resolving acute inflammation is regulated by MicroRNA and proresolving mediators. Immunity. 2013;39:885–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Z, Ruan Z, Mao Y, Dong W, Zhang Y, Yin N, et al. miR-27a is up regulated and promotes inflammatory response in sepsis. Cell Immunol. 2014;290:190–5.

    Article  CAS  PubMed  Google Scholar 

  47. Tacke F, Roderburg C, Benz F, Cardenas DV, Luedde M, Hippe HJ, et al. Levels of circulating miR-133a are elevated in sepsis and predict mortality in critically ill patients. Crit Care Med. 2014;42:1096–104.

    Article  CAS  PubMed  Google Scholar 

  48. Wu SC, Yang JC, Rau CS, Chen YC, Lu TH, Lin MW, et al. Profiling circulating microRNA expression in experimental sepsis using cecal ligation and puncture. PLoS One. 2013;8:e77936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu S, Liu C, Wang Z, Huang J, Zeng Q. microRNA-23a-5p acts as a potential biomarker for sepsis-induced acute respiratory distress syndrome in early stage. Cell Mol Biol (Noisy-le-grand). 2016;62:31–7.

    CAS  Google Scholar 

  50. Sheng B, Zhao L, Zang X, Zhen J, Chen W. miR-375 ameliorates sepsis by downregulating miR-21 level via inhibiting JAK2-STAT3 signaling. Biomed Pharmacother. 2017;86:254–61.

    Article  CAS  PubMed  Google Scholar 

  51. Wang H, Bei Y, Shen S, Huang P, Shi J, Zhang J, et al. miR-21-3p controls sepsis-associated cardiac dysfunction via regulating SORBS2. J Mol Cell Cardiol. 2016;94:43–53.

    Article  PubMed  CAS  Google Scholar 

  52. van der Heide V, Möhnle P, Rink J, Briegel J, Kreth S. Down-regulation of MicroRNA-31 in CD4 + T Cells contributes to immunosuppression in human sepsis by promoting TH2 skewing. Anesthesiology. 2016;124:908–22.

    Article  PubMed  CAS  Google Scholar 

  53. Goodwin AJ, Guo C, Cook JA, Wolf B, Halushka PV, Fan H. Plasma levels of microRNA are altered with the development of shock in human sepsis: an observational study. Crit Care. 2015;19:440.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu J, Shi K, Chen M, Xu L, Hong J, Hu B, et al. Elevated miR-155 expression induces immunosuppression via CD39(+) regulatory T-cells in sepsis patient. Int J Infect Dis. 2015;40:135–41.

    Article  PubMed  CAS  Google Scholar 

  55. Jiang Y, Zhou H, Ma D, Chen ZK, Cai X. MicroRNA-19a and CD22 comprise a feedback loop for B cell response in sepsis. Med Sci Monit. 2015;21:1548–55.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wu M, Gu JT, Yi B, Tang ZZ, Tao GC. microRNA-23b regulates the expression of inflammatory factors in vascular endothelial cells during sepsis. Exp Ther Med. 2015;9:1125–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang H, Yu B, Deng J, Jin Y, Xie L. Serum miR-122 correlates with short-term mortality in sepsis patients. Crit Care. 2014;18:704.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shao Y, Li J, Cai Y, Xie Y, Ma G, Li Y, et al. The functional polymorphisms of miR-146a are associated with susceptibility to severe sepsis in the Chinese population. Mediators Inflamm. 2014;2014:916202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Wang H, Zhang P, Chen W, Feng D, Jia Y, Xie LX. Evidence for serum miR-15a and miR-16 levels as biomarkers that distinguish sepsis from systemic inflammatory response syndrome in human subjects. Clin Chem Lab Med. 2012;50:1423–8.

    CAS  PubMed  Google Scholar 

  60. Sun X, Icli B, Wara A, Belkin N, He S, Kobzik L, et al. MicroRNA-181b regulates NF-κB-mediated vascular inflammation. J Clin Invest. 2012;122:1973–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hsieh CH, Rau CS, Jeng JC, Chen YC, Lu TH, Wu CJ, et al. Whole blood-derived microRNA signatures in mice exposed to lipopolysaccharides. J Biomed Sci. 2012;19:69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ma H, Wang X, Ha T, Gao M, Liu L, Wang R, et al. MicroRNA-125b prevents cardiac dysfunction in polymicrobial sepsis by targeting TRAF6-mediated nuclear factor κb activation and p53-mediated apoptotic signaling. J Infect Dis. 2016;214:1773–83.

    Article  PubMed  Google Scholar 

  63. Zhou W, Wang J, Li Z, Li J, Sang M. MicroRNA-205-5b inhibits HMGB1 expression in LPS-induced sepsis. Int J Mol Med. 2016;38:312–8.

    CAS  PubMed  Google Scholar 

  64. Zheng D, Yu Y, Li M, Wang G, Chen R, Fan GC, et al. Inhibition of MicroRNA 195 prevents apoptosis and multiple-organ injury in mouse models of sepsis. J Infect Dis. 2016;213:1661–70.

    Article  PubMed  Google Scholar 

  65. McClure C, Brudecki L, Ferguson DA, Yao ZQ, Moorman JP, McCall CE, et al. MicroRNA 21 (miR-21) and miR-181b couple with NFI-A to generate myeloid-derived suppressor cells and promote immunosuppression in late sepsis. Infect Immun. 2014;82:3816–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Tsujimoto H, Ono S, Efron PA, Scumpia PO, Moldawer LL, Mochizuki H. Role of toll-like receptors in the development of sepsis. Shock. 2008;29:315–21.

    CAS  PubMed  Google Scholar 

  67. Williams DL, Ha T, Li C, Kalbfleisch JH, Schweitzer J, Vogt W, et al. Modulation of tissue Toll-like receptor 2 and 4 during the early phases of polymicrobial sepsis correlates with mortality. Crit Care Med. 2003;31:1808–18.

    Article  PubMed  Google Scholar 

  68. Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J, Benz CC. Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells. Oncogene. 2008;27:5643–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma X, Becker Buscaglia LE, Barker JR, Li Y. MicroRNAs in NF-kappaB signaling. J Mol Cell Biol. 2011;3:159–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. O’Neill LA, Sheedy FJ, McCoy CE. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol. 2011;11:163–75.

    Article  PubMed  CAS  Google Scholar 

  71. Opal SM, Scannon PJ, Vincent JL, White M, Carroll SF, Palardy JE, et al. Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J Infect Dis. 1999;180:1584–9.

    Article  CAS  PubMed  Google Scholar 

  72. Park BS, Lee JO. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med. 2013;45:e66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Wang Y, Li T, Wu B, Liu H, Luo J, Feng D, et al. STAT1 regulates MD-2 expression in monocytes of sepsis via miR-30a. Inflammation. 2014;37:1903–11.

    Article  CAS  PubMed  Google Scholar 

  74. Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine 2008;42:145–51.

    Article  CAS  Google Scholar 

  75. Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, Kumagai Y, et al. Sequential control of Toll-like receptor–dependent responses by IRAK1 and IRAK2. Nat Immunol. 2008;9:684–91.

    Article  CAS  PubMed  Google Scholar 

  76. Gao M, Wang X, Zhang X, Ha T, Ma H, Liu L, et al. Attenuation of cardiac dysfunction in polymicrobial sepsis by microRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression. J Immunol. 2015;195:672–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20.

    Article  CAS  PubMed  Google Scholar 

  78. Banerjee S, Meng J, Das S, Krishnan A, Haworth J, Charboneau R, et al. Morphine induced exacerbation of sepsis is mediated by tempering endotoxin tolerance through modulation of miR-146a. Sci Rep. 2013;3:1977.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhao X, Liu D, Gong W, Zhao G, Liu L, Yang L, et al. The toll-like receptor 3 ligand, poly(I:C), improves immunosuppressive function and therapeutic effect of mesenchymal stem cells on sepsis via inhibiting MiR-143. Stem Cells. 2014;32:521–33.

    Article  CAS  PubMed  Google Scholar 

  80. Wahli W. A gut feeling of the PXR, PPAR and NF-κB connection. J Intern Med. 2008;263:613–9.

    Article  CAS  PubMed  Google Scholar 

  81. Bozza FA, Salluh JI, Japiassu AM, Soares M, Assis EF, Gomes RN, et al. Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Crit Care. 2007;11:R49.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Jiang S, Zhang HW, Lu MH, He XH, Li Y, Gu H, et al. MicroRNA-155 functions as an oncomir in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Res. 2010;70:3119–27.

    Article  CAS  PubMed  Google Scholar 

  83. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol. 2007;179:5082–9.

    Article  CAS  PubMed  Google Scholar 

  84. Cai B, Cai J, Luo Y, Chen C, Zhang S. The specific roles of JAK/STAT signaling pathway in sepsis. Inflammation. 2015;38:1599–608.

    Article  CAS  PubMed  Google Scholar 

  85. Wang X, Huang W, Yang Y, Wang Y, Peng T, Chang J, et al. Loss of duplexmiR-223 (5p and 3p) aggravates myocardial depression and mortality in polymicrobial sepsis. Biochim Biophys Acta. 2014;1842:701–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. van Dissel JT, van Langevelde P, Westendorp RG, Kwappenberg K, Frölich M. Anti-inflammatory cytokine profile and mortality in febrile patients. Lancet. 1998;351:950–3.

    Article  PubMed  Google Scholar 

  87. Ouyang W, Rutz S, Crellin NK, Valdez PA, Hymowitz SG. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol. 2011;29:71–109.

    Article  CAS  PubMed  Google Scholar 

  88. Song X, Wang CT, Geng XH. MicroRNA-29a promotes apoptosis of monocytes by targeting STAT3 during sepsis. Genet Mol Res. 2015;14:13746–53.

    Article  CAS  PubMed  Google Scholar 

  89. An H, Xu H, Zhang M, Zhou J, Feng T, Qian C, et al. Src homology 2 domain-containing inositol-5-phosphatase 1 (SHIP1) negatively regulates TLR4-mediated LPS response primarily through a phosphatase activity- and PI-3K-independent mechanism. Blood. 2005;105:4685–92.

    Article  CAS  PubMed  Google Scholar 

  90. O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA. 2009;106:7113–8.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Cheung ST, So EY, Chang D, Ming-Lum A, Mui AL. Interleukin-10 inhibits lipopolysaccharide induced miR-155 precursor stability and maturation. PLoS One. 2013;8:e71336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Curtale G, Mirolo M, Renzi TA, Rossato M, Bazzoni F, Locati M. Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc Natl Acad Sci USA. 2013;110:11499–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rossato M, Curtale G, Tamassia N, Castellucci M, Mori L, Gasperini S, et al. IL-10-induced microRNA-187 negatively regulates TNF-α, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl Acad Sci USA. 2012;109:E3101–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lu TX, Hartner J, Lim EJ, Fabry V, Mingler MK, Cole ET, et al. MicroRNA-21 limits in vivo immune response-mediated activation of the IL-12/IFN-gamma pathway, Th1 polarization, and the severity of delayed-type hypersensitivity. J Immunol. 2011;187:3362–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Trinchieri G. Interleukin-12: A proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol. 1995;13:251–76.

    Article  CAS  PubMed  Google Scholar 

  96. Sheedy FJ, Palsson-McDermott E, Hennessy EJ, Martin C, O’Leary JJ, Ruan Q, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol. 2010;11:141–7.

    Article  CAS  PubMed  Google Scholar 

  97. Huang L, Li J, Han Y, Zhao S, Zheng Y, Sui F, et al. Serum calprotectin expression as a diagnostic marker for sepsis in postoperative intensive care unit patients. J Interferon Cytokine Res. 2016;36:607–16.

    Article  CAS  PubMed  Google Scholar 

  98. Huang H, Tu L. Expression of S100 family proteins in neonatal rats with sepsis and its significance. Int J Clin Exp Pathol. 2015;8:1631–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Tschoeke SK, Oberholzer A, Moldawer LL. Interleukin-18: a novel prognostic cytokine in bacteria-induced sepsis. Crit Care Med. 2006;34:1225–33.

    Article  CAS  PubMed  Google Scholar 

  100. Ricciotti E, FitzGerald GA. Prostaglandins and Inflammation. Arterioscler Thromb Vasc Biol. 2011;31:986–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ejima K, Layne MD, Carvajal IM, Kritek PA, Baron RM, Chen YH, et al. Cyclooxygenase-2 deficient mice are resistant to endotoxin-induced inflammation and death. FASEB J. 2003;17:1325–7.

    CAS  PubMed  Google Scholar 

  102. Chen J, Jiang S, Cao Y, Yang Y. Altered miRNAs expression profiles and modulation of immune response genes and proteins during neonatal sepsis. J Clin Immunol. 2014;34:340–8.

    Article  CAS  PubMed  Google Scholar 

  103. Charoensup J, Sermswan RW, Paeyao A, Promakhejohn S, Punasee S, Chularari C, et al. High HMGB1 level is associated with poor outcome of septicemic melioidosis. Int J Infect Dis. 2014;28:111–6.

    Article  CAS  PubMed  Google Scholar 

  104. Song Y, Dou H, Li X, Zhao X, Li Y, Liu D, et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of IL-1β-primed mesenchymal stem cells against sepsis. Stem Cells. 2017. doi:10.1002/stem.2564.

    PubMed  Google Scholar 

  105. Wang X, Gu H, Qin D, Yang L, Huang W, Essandoh K, et al. Exosomal miR-223 Contributes to Mesenchymal Stem Cell-Elicited Cardioprotection in Polymicrobial Sepsis. Sci Rep. 2015;5:13721.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Xue WL, Bai X, Zhang L. rhTNFR:Fc increases Nrf2 expression via miR-27a mediation to protect myocardium against sepsis injury. Biochem Biophys Res Commun. 2015;464:855–61.

    Article  CAS  PubMed  Google Scholar 

  107. Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood. 2003;101:3765–77.

    Article  CAS  PubMed  Google Scholar 

  108. London NR, Zhu W, Bozza FA, Smith MC, Greif DM, Sorensen LK, et al. Targeting Robo4-dependent slit signaling to survive the cytokine storm in sepsis and influenza. Sci Transl Med. 2010;2:23ra19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Bevilacqua MP. Endothelial-Leukocyte Adhesion Molecules. Annu Rev Immunol. 1993;11:767–804.

    Article  CAS  PubMed  Google Scholar 

  110. Hildebrand F, Pape HC, Harwood P, Müller K, Hoevel P, Pütz C, et al. Role of adhesion molecule ICAM in the pathogenesis of polymicrobial sepsis. Exp Toxicol Pathol. 2005;56:281–90.

    Article  CAS  PubMed  Google Scholar 

  111. Figueras-Aloy J, Gómez-López L, Rodríguez-Miguélez J-M, Salvia-Roiges, Jordán-García I, Ferrer-Codina I, et al. Serum Soluble ICAM-1, VCAM-1, L-Selectin, and P-Selectin levels as markers of infection and their relation to clinical severity in neonatal sepsis. Am J Perinatol. 2007;24:331–8.

    Article  PubMed  Google Scholar 

  112. Zaki Mel-S, el-Sayed H. Evaluation of microbiologic and hematologic parameters and E-selectin as early predictors for outcome of neonatal sepsis. Arch Pathol Lab Med. 2009;133:1291–6.

    PubMed  Google Scholar 

  113. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA. 2008;105:1516–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ye X, Ding J, Zhou X, Chen G, Liu SF. Divergent roles of endothelial NF-κB in multiple organ injury and bacterial clearance in mouse models of sepsis. J Exp Med. 2008;205:1303–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Suehiro J, Hamakubo T, Kodama T, Aird WC, Minami T. Vascular endothelial growth factor activation of endothelial cells is mediated by early growth response-3. Blood. 2010;115:2520–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ruland J. Return to homeostasis: downregulation of NF-κB responses. Nat Immunol. 2011;12:709–14.

    Article  CAS  PubMed  Google Scholar 

  117. Cheng HS, Sivachandran N, Lau A, Boudreau E, Zhao JL, Baltimore D, et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med. 2013;5:1017–34.

    Article  PubMed  CAS  Google Scholar 

  118. Kempe S, Kestler H, Lasar A, Wirth T. NF-kappa B controls the global pro-inflammatory response in endothelial cells: evidence for the regulation of a pro-atherogenic program. Nucleic Acids Res. 2005;33:5308–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhou Z, Connell M, MacEwan DJ. TNFR1-induced NF-κB, but not ERK, p38MAPK or JNK activation, mediates TNF-induced ICAM-1 and VCAM-1 expression on endothelial cells. Cell Signal. 2007;19:1238–48.

    Article  CAS  PubMed  Google Scholar 

  120. Yano K, Liaw P, Mullington J, Shih SC, Okada H, Bodyak N, et al. Vascular endothelial growth factor is an important determinant of sepsis morbidity and mortality. J Exp Med. 2006;203:1447–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pickkers P, Sprong T, Eijk Lv, Hoeven Hv, Smits P, Deuren Mv. Vascular endothelial growth factor is increased during the first 48 h of human septic shock and correlates with vascular permeability. Shock. 2005;24:508–12.

    Article  CAS  PubMed  Google Scholar 

  122. Kim I, Moon SO, Kim SH, Kim HJ, Koh YS, Koh GY. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells. J Biol Chem. 2001;276:7614–20.

    Article  CAS  PubMed  Google Scholar 

  123. van der Flier M, van Leeuwen HJ, van Kessel KP, Kimpen JL, Hoepelman AI, Geelen SP. Plasma vascular endothelial growth factor in severe sepsis. Shock. 2005;23:35–8.

    Article  PubMed  CAS  Google Scholar 

  124. Yang F, Li QJ, Gong ZB, Zhou L, You N, Wang S, et al. MicroRNA-34a targets Bcl-2 and sensitizes human hepatocellular carcinoma cells to sorafenib treatment. Technol Cancer Res Treat. 2014;13:77–86.

    CAS  PubMed  Google Scholar 

  125. Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci USA. 2008;105:13421–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chatterjee V, Beard RS, Reynolds JJ, Haines R, Guo M, Rubin M, et al. MicroRNA-147b regulates vascular endothelial barrier function by targeting ADAM15 expression. PLoS One. 2014;9:e110286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Guo C, Goodwin AJ, Buie JN, Cook JA, Halushka PV, Argraves K, et al. A stromal cell-derived factor 1 alpha analogue improves endothelial cell function in lipopolysaccharide-induced acute respiratory distress syndrome. Mol Med. 2016;22:115–23.

    Article  PubMed Central  CAS  Google Scholar 

  128. Rajput C, Tauseef M, Farazuddin M, Yazbeck P, Amin MR, Avin Br V, et al. MicroRNA-150 suppression of angiopoetin-2 generation and signaling is crucial for resolving vascular injury. Arterioscler Thromb Vasc Biol. 2016;36:380–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Liang X, Zhang L, Wang S, Han Q, Zhao RC. Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci. 2016;129:2182–9.

    Article  CAS  PubMed  Google Scholar 

  130. Madoiwa S, Nunomiya S, Ono T, Shintani Y, Ohmori T, Mimuro J, et al. Plasminogen activator inhibitor 1 promotes a poor prognosis in sepsis-induced disseminated intravascular coagulation. Int J Hematol. 2006;84:398–405.

    Article  CAS  PubMed  Google Scholar 

  131. Shapiro NI, Schuetz P, Yano K, Sorasaki M, Parikh SM, Jones AE, et al. The association of endothelial cell signaling, severity of illness, and organ dysfunction in sepsis. Crit Care. 2010;14:R182.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Li X, Gao Y, Meng Z, Zhang C, Qi Q. Regulatory role of microRNA-30b and plasminogen activator inhibitor-1 in the pathogenesis of cognitive impairment. Exp Ther Med. 2016;11:1993–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Chen YS, Shen L, Mai RQ, Wang Y. Levels of microRNA-181b and plasminogen activator inhibitor-1 are associated with hypertensive disorders complicating pregnancy. Exp Ther Med. 2014;8:1523–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Villadsen SB, Bramsen JB, Ostenfeld MS, Wiklund ED, Fristrup N, Gao S, et al. The miR-143/-145 cluster regulates plasminogen activator inhibitor-1 in bladder cancer. Br J Cancer. 2012;106:366–74.

    Article  CAS  PubMed  Google Scholar 

  135. Kowal-Vern A, Orkin BA. Antithrombin in the treatment of burn trauma. World J Crit Care Med. 2016;5:17–26.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wang HJ, Deng J, Wang JY, Zhang PJ, Xin Z, Xiao K, et al. Serum miR-122 levels are related to coagulation disorders in sepsis patients. Clin Chem Lab Med. 2014;52:927–33.

    Article  CAS  PubMed  Google Scholar 

  137. Zhang Y, Chen M, Zhang Y, Peng P, Li J, Xin X. miR-96 and miR-330 overexpressed and targeted AQP5 in lipopolysaccharide-induced rat lung damage of disseminated intravascular coagulation. Blood Coagul Fibrinolysis. 2014;25:731–7.

    Article  CAS  PubMed  Google Scholar 

  138. Moore CC, McKillop IH, Huynh T. MicroRNA expression following activated protein C treatment during septic shock. J Surg Res. 2013;182:116–26.

    Article  CAS  PubMed  Google Scholar 

  139. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13:862–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13:260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Luo CT, Li MO. Transcriptional control of regulatory T cell development and function. Trends Immunol. 2013;34:531–9.

    Article  CAS  PubMed  Google Scholar 

  142. Ji F, Chen R, Liu B, Zhang X, Han J, Wang H, et al. BAFF induces spleen CD4 + T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression. Biochem Biophys Res Commun. 2012;425:854–8.

    Article  CAS  PubMed  Google Scholar 

  143. Herwald H, Egesten A. Sepsis–pro-inflammatory and anti-inflammatory responses. Contrib Microbiol. 2011;17:108–24.

    Article  Google Scholar 

  144. Monneret G, Debard AL, Venet F, Bohe J, Hequet O, Bienvenu J, et al. Marked elevation of human circulating CD4 + CD25 + regulatory T cells in sepsis-induced immunoparalysis. Crit Care Med. 2003;31:2068–71.

    Article  PubMed  Google Scholar 

  145. Ono S, Kimura A, Hiraki S, Takahata R, Tsujimoto H, Kinoshita M, et al. Removal of increased circulating CD4 + CD25 + Foxp3 + regulatory T cells in patients with septic shock using hemoperfusion with polymyxin B-immobilized fibers. Surgery. 2013;153:262–71.

    Article  PubMed  Google Scholar 

  146. Rouas R, Fayyad-Kazan H, Zein N, Lewalle P, Rothé F, Simion A, et al. Human natural Treg microRNA signature: role of microRNA-31 and microRNA-21 in FOXP3 expression. Eur J Immunol. 2009;39:1608–18.

    Article  CAS  PubMed  Google Scholar 

  147. Antonioli L, Pacher P, Vizi ES, Haskó G. CD39 and CD73 in immunity and inflammation. Trends Mol Med. 2013;19:355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Huang H, Xu R, Lin F, Bao C, Wang S, Ji C, et al. High circulating CD39+ regulatory T cells predict poor survival for sepsis patients. Int J Infect Dis. 2015;30:57–63.

    Article  CAS  PubMed  Google Scholar 

  149. Venet F, Chung CS, Monneret G, Huang X, Horner B, Garber M, et al. Regulatory T cell populations in sepsis and trauma. J Leukoc Biol. 2008;83:523–35.

    Article  CAS  PubMed  Google Scholar 

  150. Roth G, Moser B, Krenn C, Brunner M, Haisjackl M, Almer G, et al. Susceptibility to programmed cell death in T-lymphocytes from septic patients: a mechanism for lymphopenia and Th2 predominance. Biochem Biophys Res Commun. 2003;308:840–6.

    Article  CAS  PubMed  Google Scholar 

  151. Santos L, Draves KE, Boton M, Grewal PK, Marth JD, Clark EA. Dendritic cell-dependent inhibition of B cell proliferation requires CD22. J Immunol. 2008;180:4561–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell. 2007;131:146–59.

    Article  CAS  PubMed  Google Scholar 

  153. Seeley JJ, Ghosh S. Tolerization of inflammatory gene expression. Cold Spring Harb Symp Quant Biol. 2013;78:69–79.

    Article  PubMed  Google Scholar 

  154. Cavaillon JM, Adib-Conquy M. Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit Care. 2006;10:233.

    Article  PubMed  PubMed Central  Google Scholar 

  155. El Gazzar M, McCall CE. MicroRNAs distinguish translational from transcriptional silencing during endotoxin tolerance. J Biol Chem. 2010;285:20940–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Brudecki L, Ferguson DA, McCall CE, El Gazzar M. MicroRNA-146a and RBM4 form a negative feed-forward loop that disrupts cytokine mRNA translation following TLR4 responses in human THP-1 monocytes. Immunol Cell Biol. 2013;91:532–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nahid MA, Satoh M, Chan EK. MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol. 2011;8:388–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dan C, Jinjun B, Zi-Chun H, Lin M, Wei C, Xu Z, et al. Modulation of TNF-α mRNA stability by human antigen R and miR181s in sepsis-induced immunoparalysis. EMBO Mol Med. 2014;7:140–57.

    Article  PubMed Central  CAS  Google Scholar 

  159. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Janols H, Bergenfelz C, Allaoui R, Larsson AM, Rydén L, Björnsson S, et al. A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in gram-positive cases. J Leukoc Biol. 2014;96:685–93.

    Article  PubMed  CAS  Google Scholar 

  161. Lai D, Qin C, Shu Q. Myeloid-Derived Suppressor Cells in Sepsis. BioMed Res Int. 2014;2014:598654.

    PubMed  PubMed Central  Google Scholar 

  162. Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 2011;32:19–25.

    Article  CAS  PubMed  Google Scholar 

  163. McClure C, McPeak MB, Youssef D, Yao ZQ, McCall CE, El Gazzar M. Stat3 and C/EBPβ synergize to induce miR-21 and miR-181b expression during sepsis. Immunol Cell Biol. 2017;95:42–55.

    Article  CAS  PubMed  Google Scholar 

  164. Oberholzer C, Oberholzer A, Clare-Salzler M, Moldawer LL. Apoptosis in sepsis: a new target for therapeutic exploration. FASEB J. 2001;15:879–92.

    Article  CAS  PubMed  Google Scholar 

  165. Hotchkiss RS, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, Matuschak GM, et al. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med. 1999;27:1230–51.

    Article  CAS  PubMed  Google Scholar 

  166. Hotchkiss RS, Coopersmith CM, McDunn JE, Ferguson TA. The sepsis seesaw: tilting toward immunosuppression. Nat Med. 2009;15:496–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Precone V, Stornaiuolo G, Amato A, Brancaccio G, Nardiello S, Gaeta GB. Different changes in mitochondrial apoptotic pathway in lymphocytes and granulocytes in cirrhotic patients with sepsis. Liver Int. 2013;33:834–42.

    Article  CAS  PubMed  Google Scholar 

  168. Hotchkiss RS, Swanson PE, Knudson CM, Chang KC, Cobb JP, Osborne DF, et al. Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis. J Immunol. 1999;162:4148–56.

    CAS  PubMed  Google Scholar 

  169. Gao R, Ma Z, Hu Y, Chen J, Shetty S, Fu J. Sirt1 restrains lung inflammasome activation in a murine model of sepsis. Am J Physiol Lung Cell Mol Physiol. 2015;308:L847–L853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Jia Z, Wang J, Shi Q, Liu S, Wang W, Tian Y, et al. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition. Apoptosis. 2016;21:174–83.

    Article  CAS  PubMed  Google Scholar 

  171. Lv X, Wang H. Pathophysiology of sepsis-induced myocardial dysfunction. Mil Med Res. 2016;3:30.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Avlas O, Fallach R, Shainberg A, Porat E, Hochhauser E. Toll-Like receptor 4 stimulation initiates an inflammatory response that decreases cardiomyocyte contractility. Antioxid Redox Signal. 2011;15:1895–909.

    Article  CAS  PubMed  Google Scholar 

  173. Zou L, Feng Y, Chen YJ, Si R, Shen S, Zhou Q, et al. Toll-like receptor 2 plays a critical role in cardiac dysfunction during polymicrobial sepsis. Crit Care Med. 2010;38:1335–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Gao M, Ha T, Zhang X, Liu L, Wang X, Kelley J, et al. Toll-like receptor 3 plays a central role in cardiac dysfunction during polymicrobial sepsis. Crit Care Med. 2012;40:2390–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Nemoto S, Vallejo JG, Knuefermann P, Misra A, Defreitas G, Carabello BA, et al. Escherichia coli LPS-induced LV dysfunction: role of toll-like receptor-4 in the adult heart. Am J Physiol Heart Circ Physiol. 2002;282:H2316–H23.

    Article  CAS  PubMed  Google Scholar 

  176. Gao M, Ha T, Zhang X, Wang X, Liu L, Kalbfleisch J, et al. The Toll-like Receptor 9 ligand, CpG oligodeoxynucleotide, attenuates cardiac dysfunction in polymicrobial sepsis, involving activation of both phosphoinositide 3 kinase/Akt and extracellular-signal-related kinase signaling. J Infect Dis. 2013;207:1471–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang H, Wang HY, Bassel-Duby R, Maass DL, Johnston WE, Horton JW, et al. Role of interleukin-6 in cardiac inflammation and dysfunction after burn complicated by sepsis. Am J Physiol Heart Circ Physiol. 2007;292:H2408–H2416.

    Article  CAS  PubMed  Google Scholar 

  178. Andrejko KM, Chen J, Deutschman CS. Intrahepatic STAT-3 activation and acute phase gene expression predict outcome after CLP sepsis in the rat. Am J Physiol. 1998;275:G1423–G9.

    CAS  PubMed  Google Scholar 

  179. Kakimoto Y, Ito S, Abiru H, Kotani H, Ozeki M, Tamaki K, et al. Sorbin and SH3 Domain-containing protein 2 is released from infarcted heart in the very early phase: proteomic analysis of cardiac tissues from patients. J Am Heart Assoc. 2013;2:e000565.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Crouser ED. Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. Mitochondrion. 2004;4:729–41.

    Article  CAS  PubMed  Google Scholar 

  181. Scarpulla RC. Nuclear control of respiratory chain expression by nuclear respiratory factors and pgc-1-related coactivator. Ann N Y Acad Sci. 2008;1147:321–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Sweeney TE, Suliman HB, Hollingsworth JW, Piantadosi CA. Differential regulation of the PGC family of genes in a mouse model of Staphylococcus aureus sepsis. Plos One. 2010;5:e11606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW, et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest. 2006;116:984–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Li H, Han W, Polosukhin V, Yull F, Segal B, Xie CM, et al. NF-κ B inhibition after cecal ligation and puncture reduces sepsis-associated lung injury without altering bacterial host defense. Mediators Inflamm. 2013;2013:503213.

    PubMed  PubMed Central  Google Scholar 

  185. Zhang J, Ding C, Shao Q, Liu F, Zeng Z, Nie C, et al. The protective effects of transfected microRNA-146a on mice with sepsis-induced acute lung injury in vivo. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2015;27:591–4.

    PubMed  Google Scholar 

  186. Papathanassoglou ED, Moynihan JA, Ackerman MH. Does programmed cell death (apoptosis) play a role in the development of multiple organ dysfunction in critically ill patients? a review and a theoretical framework. Crit Care Med. 2000;28:537–49.

    Article  CAS  PubMed  Google Scholar 

  187. Iwata A, de Claro RA, Morgan-Stevenson VL, Tupper JC, Schwartz BR, Liu L, et al. Extracellular administration of Bcl2 protein reduces apoptosis and improves survival in a murine model of sepsis. PLoS One. 2011;6:e14729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Li T, Zhang J, Feng J, Li Q, Wu L, Ye Q, et al. Resveratrol reduces acute lung injury in a LPS-induced sepsis mouse model via activation of Sirt1. Mol Med Rep. 2013;7:1889–95.

    CAS  PubMed  Google Scholar 

  189. Alobaidi R, Basu RK, Goldstein SL, Bagshaw SM. Sepsis-associated acute kidney injury. Semin Nephrol. 2015;35:2–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Khalid U, Bowen T, Fraser DJ, Jenkins RH. Acute kidney injury: a paradigm for miRNA regulation of the cell cycle. Biochem Soc Trans. 2014;42:1219–23.

    Article  CAS  PubMed  Google Scholar 

  191. Godwin JG, Ge X, Stephan K, Jurisch A, Tullius SG, Iacomini J. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci USA. 2010;107:14339–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Jia P, Teng J, Zou J, Fang Y, Wu X, Liang M, et al. Xenon protects against septic acute kidney injury via miR-21 target signaling pathway. Crit Care Med. 2015;43:e250–e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Dai Y, Jia P, Fang Y, Liu H, Jiao X, He JC, et al. miR-146a is essential for lipopolysaccharide (LPS)-induced cross-tolerance against kidney ischemia/reperfusion injury in mice. Sci Rep. 2016;6:27091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Gaieski DF, Mikkelsen ME, Band RA, Pines JM, Massone R, Furia FF, et al. Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. Crit Care Med. 2010;38:1045–53.

    Article  PubMed  Google Scholar 

  195. Cortez MA, Calin GA. MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opin Biol Ther. 2009;9:703–11.

    Article  CAS  PubMed  Google Scholar 

  196. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.

    Article  CAS  PubMed  Google Scholar 

  197. Marshall JC. Why have clinical trials in sepsis failed? Trends Mol Med. 2014;20:195–203.

    Article  PubMed  Google Scholar 

  198. Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ. Comparing the MicroRNA spectrum between serum and plasma. PLoS One. 2012;7:e41561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author contributions

Both the authors were involved in the drafting, editing, and reviewing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Vishnu Bhat.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Ethical approval

This is a review article, and there is no human or animal experiment.

Additional information

Responsible Editor: Graham R. Wallace.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kingsley, S.M.K., Bhat, B.V. Role of microRNAs in sepsis. Inflamm. Res. 66, 553–569 (2017). https://doi.org/10.1007/s00011-017-1031-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-017-1031-9

Keywords

Navigation