Skip to main content

Advertisement

Log in

Inhibitory effects of polyozellin from Polyozellus multiplex on HMGB1-mediated septic responses

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Aim and objective

The ubiquitous nuclear protein, high-mobility group box 1 (HMGB1), is released by activated macrophages and human umbilical vein endothelial cells (HUVECs) and functions as a late mediator of experimental sepsis. Polyozellin, which has been reported to have a variety of biological activities including antioxidant and anticancer activity, is the major active compound found in edible mushroom (Polyozellus multiplex). In this study, we investigated the antiseptic effects and underlying mechanisms of polyozellin against HMGB1-mediated septic responses in HUVECs and mice.

Methods

The anti-inflammatory activities of polyozellin were determined by measuring permeability, human neutrophil adhesion and migration, and activation of proinflammatory proteins in HMGB1-activated HUVECs and mice.

Results

According to the results, polyozellin effectively inhibited lipopolysaccharide (LPS)-induced release of HMGB1, and suppressed HMGB1-mediated septic responses, such as hyperpermeability, adhesion and migration of leukocytes, and expression of cell adhesion molecules. In addition, polyozellin suppressed the production of tumor necrosis factor-α and interleukin (IL)-6, and the activation of nuclear factor-κB and extracellular signal-regulated kinases 1/2 by HMGB1.

Conclusion

Collectively, these results indicate that P. multiplex containing polyozellin could be commercialized as functional food for preventing and treatment of various severe vascular inflammatory diseases via inhibition of the HMGB1 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Carrigan SD, Scott G, Tabrizian M. Toward resolving the challenges of sepsis diagnosis. Clin Chem. 2004;50:1301–14.

    Article  CAS  PubMed  Google Scholar 

  2. Nguyen HB, Rivers EP, Abrahamian FM, Moran GJ, Abraham E, Trzeciak S, et al. Severe sepsis and septic shock: review of the literature and emergency department management guidelines. Ann Emerg Med. 2006;48:28–54.

    PubMed  Google Scholar 

  3. Lever A, Mackenzie I. Sepsis: definition, epidemiology, and diagnosis. BMJ. 2007;335:879–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ombrellino M, Wang H, Ajemian MS, Talhouk A, Scher LA, Friedman SG, et al. Increased serum concentrations of high-mobility-group protein 1 in haemorrhagic shock. Lancet. 1999;354:1446–7.

    Article  CAS  PubMed  Google Scholar 

  5. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285:248–51.

    Article  CAS  PubMed  Google Scholar 

  6. Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29:139–62.

    Article  CAS  PubMed  Google Scholar 

  7. Hori O, Brett J, Slattery T, Cao R, Zhang J, Chen JX, et al. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. J Biol Chem. 1995;270:25752–61.

    Article  CAS  PubMed  Google Scholar 

  8. Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem. 2004;279:7370–7.

    Article  CAS  PubMed  Google Scholar 

  9. Bae JS, Rezaie AR. Activated protein C inhibits high mobility group box 1 signaling in endothelial cells. Blood. 2011;118:3952–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Yang H, Ochani M, Li J, Qiang X, Tanovic M, Harris HE, et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci USA. 2004;101:296–301.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Buras JA, Holzmann B, Sitkovsky M. Animal models of sepsis: setting the stage. Nat Rev Drug Discov. 2005;4:854–65.

    Article  CAS  PubMed  Google Scholar 

  12. Abraham E, Wunderink R, Silverman H, Perl TM, Nasraway S, Levy H, et al. Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome: a randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha MAb Sepsis Study Group. JAMA. 1995;273:934–41.

    Article  CAS  PubMed  Google Scholar 

  13. Abraham E, Anzueto A, Gutierrez G, Tessler S, San Pedro G, Wunderink R, et al. Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. NORASEPT II Study Group. Lancet. 1998;351:929–33.

    Article  CAS  PubMed  Google Scholar 

  14. Tracey KJ, Fong Y, Hesse DG, Manogue KR, Lee AT, Kuo GC, et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature. 1987;330:662–4.

    Article  CAS  PubMed  Google Scholar 

  15. Jin XY, Lee SH, Kim JY, Zhao YZ, Park EJ, Lee BS, et al. Polyozellin inhibits nitric oxide production by down-regulating LPS-induced activity of NF-kappaB and SAPK/JNK in RAW 264.7 cells. Planta Med. 2006;72:857–9.

    Article  CAS  PubMed  Google Scholar 

  16. Lee HJ, Rhee IK, Lee KB, Yoo ID, Song KS. Kynapcin-12, a new p-terphenyl derivative from Polyozellus multiplex, inhibits prolyl endopeptidase. J Antibiot (Tokyo). 2000;53:714–9.

    Article  CAS  Google Scholar 

  17. Kim SI, Park IH, Song KS. kynapcin-13 and -28, new benzofuran prolyl endopeptidase inhibitors from polyozellus multiplex. J Antibiot (Tokyo). 2002;55:623–8.

    Article  CAS  Google Scholar 

  18. Kim JH, Lee JS, Song KS, Kwon CS, Kim YK, Kim JS. Polyozellin isolated from Polyozellus multiplex induces phase 2 enzymes in mouse hepatoma cells and differentiation in human myeloid leukaemic cell lines. J Agric Food Chem. 2004;52:451–5.

    Article  CAS  PubMed  Google Scholar 

  19. Lee SH, Song KS, Sohn DH, Seo GS. Polyozellin blocks tumor necrosis factor alpha-induced interleukin 8 and matrix metalloproteinase 7 production in the human intestinal epithelial cell line HT-29. Arch Pharm Res. 2011;34:91–7.

    Article  CAS  PubMed  Google Scholar 

  20. Kim D-C, Lee W, Bae J-S. Vascular anti-inflammatory effects of curcumin on HMGB1-mediated responses in vitro. Inflamm Res. 2011;60:1161–8.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou W, Oh J, Wonhwa L, Kwak S, Li W, Chittiboyina AG, et al. The first cyclomegastigmane rhododendroside A from Rhododendron brachycarpum alleviates HMGB1-induced sepsis. Biochim Biophys Acta Gen Subj. 2014;1840:2042–9.

    Article  CAS  Google Scholar 

  22. Lee W, Ku S-K, Bae JW, Bae J-S. Inhibitory effects of lycopene on HMGB1-mediated pro-inflammatory responses in both cellular and animal models. Food Chem Toxicol. 2012;50:1826–33.

    Article  CAS  PubMed  Google Scholar 

  23. Hwang JS, Song KS, Kim WG, Lee TH, Koshino H, Yoo ID. Polyozellin, a new inhibitor of prolyl endopeptidase from Polyozellus multiplex. J Antibiot (Tokyo). 1997;50:773–7.

    Article  CAS  Google Scholar 

  24. Chung SK, Jeon SY, Lee HJ, Kim SK, Kim SI, Kim GS, et al. Antioxidative effects of polyozellin and thelephoric acid isolated from Polyozellus multiplex. J Korean Soc Appl Biol Chem. 2004;47:283–6.

    CAS  Google Scholar 

  25. Bae JS, Lee W, Nam JO, Kim JE, Kim SW, Kim IS. Transforming growth factor beta-induced protein promotes severe vascular inflammatory responses. Am J Respir Crit Care Med. 2014;189:779–86.

    Article  PubMed  Google Scholar 

  26. Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med. 2004;10:1216–21.

    Article  CAS  PubMed  Google Scholar 

  27. Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc. 2009;4:31–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ku SK, Han MS, Lee MY, Lee YM, Bae JS. Inhibitory effects of oroxylin A on endothelial protein C receptor shedding in vitro and in vivo. BMB Rep. 2014;47:336–41.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Ku SK, Bae JS. Antithrombotic activities of sulforaphane via inhibiting platelet aggregation and FIIa/FXa. Arch Pharm Res. 2014;37:1454–63.

    Article  CAS  PubMed  Google Scholar 

  30. Ku SK, Bae JS. Antiplatelet and antithrombotic activities of purpurogallin in vitro and in vivo. BMB Rep. 2014;47:376–81.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Yoo H, Ku SK, Lee W, Kwak S, Baek YD, Min BW, et al. Antiplatelet, anticoagulant, and profibrinolytic activities of cudratricusxanthone A. Arch Pharm Res. 2014;37:1069–78.

    Article  CAS  PubMed  Google Scholar 

  32. Lee W, Ku SK, Bae JS. Emodin-6-O-beta-d-glucoside down-regulates endothelial protein C receptor shedding. Arch Pharm Res. 2013;36:1160–5.

    Article  CAS  PubMed  Google Scholar 

  33. Ku SK, Lee IC, Bae JS. Antithrombotic activities of oroxylin A in vitro and in vivo. Arch Pharm Res. 2013;37:679–86.

    Article  PubMed  Google Scholar 

  34. Lee W, Ku SK, Bae JS. Antiplatelet, anticoagulant, and profibrinolytic activities of baicalin. Arch Pharm Res. 2015;38:893–903.

    Article  CAS  PubMed  Google Scholar 

  35. Ku SK, Lee W, Kang M, Bae JS. Antithrombotic activities of aspalathin and nothofagin via inhibiting platelet aggregation and FIIa/FXa. Arch Pharm Res. 2015;38:1080–9.

    Article  CAS  PubMed  Google Scholar 

  36. Hofbauer R, Moser D, Salfinger H, Frass M, Kapiotis S. Sufentanil inhibits migration of human leukocytes through human endothelial cell monolayers. Anesth Analg. 1998;87:1181–5.

    CAS  PubMed  Google Scholar 

  37. Bae JS, Rezaie AR. Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand. BMB Rep. 2013;46:544–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Lee W, Kim TH, Ku SK, Min KJ, Lee HS, Kwon TK, et al. Barrier protective effects of withaferin A in HMGB1-induced inflammatory responses in both cellular and animal models. Toxicol Appl Pharmacol. 2012;262:91–8.

    Article  CAS  PubMed  Google Scholar 

  39. Che W, Lerner-Marmarosh N, Huang Q, Osawa M, Ohta S, Yoshizumi M, et al. Insulin-like growth factor-1 enhances inflammatory responses in endothelial cells: role of Gab1 and MEKK3 in TNF-alpha-induced c-Jun and NF-kappaB activation and adhesion molecule expression. Circ Res. 2002;90:1222–30.

    Article  CAS  PubMed  Google Scholar 

  40. Kim TH, Ku SK, Lee IC, Bae JS. Anti-inflammatory functions of purpurogallin in LPS-activated human endothelial cells. BMB Rep. 2012;45:200–5.

    Article  CAS  PubMed  Google Scholar 

  41. Qureshi SH, Manithody C, Bae JS, Yang L, Rezaie AR. Autolysis loop restricts the specificity of activated protein C: analysis by FRET and functional assays. Biophys Chem. 2008;134:239–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Fuseler JW, Merrill DM, Rogers JA, Grisham MB, Wolf RE. Analysis and quantitation of NF-kappaB nuclear translocation in tumor necrosis factor alpha (TNF-alpha) activated vascular endothelial cells. Microsc Microanal. 2006;12:269–76.

    Article  CAS  PubMed  Google Scholar 

  43. Bae JS, Lee W, Rezaie AR. Polyphosphate elicits proinflammatory responses that are counteracted by activated protein C in both cellular and animal models. J Thromb Haemost. 2012;10:1145–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Lee JD, Huh JE, Jeon G, Yang HR, Woo HS, Choi DY, et al. Flavonol-rich RVHxR from Rhus verniciflua Stokes and its major compound fisetin inhibits inflammation-related cytokines and angiogenic factor in rheumatoid arthritic fibroblast-like synovial cells and in vivo models. Int Immunopharmacol. 2009;9:268–76.

    Article  CAS  PubMed  Google Scholar 

  45. Akeson AL, Woods CW. A fluorometric assay for the quantitation of cell adherence to endothelial cells. J Immunol Methods. 1993;163:181–5.

    Article  CAS  PubMed  Google Scholar 

  46. Kim I, Moon SO, Kim SH, Kim HJ, Koh YS, Koh GY. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells. J Biol Chem. 2001;276:7614–20.

    Article  CAS  PubMed  Google Scholar 

  47. Bae JW, Bae JS. Barrier protective effects of lycopene in human endothelial cells. Inflamm Res. 2011;60:751–8.

    Article  CAS  PubMed  Google Scholar 

  48. Ozdulger A, Cinel I, Koksel O, Cinel L, Avlan D, Unlu A, et al. The protective effect of N-acetylcysteine on apoptotic lung injury in cecal ligation and puncture-induced sepsis model. Shock. 2003;19:366–72.

    Article  CAS  PubMed  Google Scholar 

  49. El Gazzar M. HMGB1 modulates inflammatory responses in LPS-activated macrophages. Inflamm Res. 2007;56:162–7.

    Article  PubMed  Google Scholar 

  50. Mullins GE, Sunden-Cullberg J, Johansson AS, Rouhiainen A, Erlandsson-Harris H, Yang H, et al. Activation of human umbilical vein endothelial cells leads to relocation and release of high-mobility group box chromosomal protein 1. Scand J Immunol. 2004;60:566–73.

    Article  CAS  PubMed  Google Scholar 

  51. Chen G, Li J, Ochani M, Rendon-Mitchell B, Qiang X, Susarla S, et al. Bacterial endotoxin stimulates macrophages to release HMGB1 partly through CD14- and TNF-dependent mechanisms. J Leukoc Biol. 2004;76:994–1001.

    Article  CAS  PubMed  Google Scholar 

  52. Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, et al. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol. 2001;21:15–23.

    Article  CAS  PubMed  Google Scholar 

  53. Sama AE, D’Amore J, Ward MF, Chen G, Wang H. Bench to bedside: HMGB1-a novel proinflammatory cytokine and potential therapeutic target for septic patients in the emergency department. Acad Emerg Med. 2004;11:867–73.

    PubMed  Google Scholar 

  54. Wolfson RK, Chiang ET, Garcia JG. HMGB1 induces human lung endothelial cell cytoskeletal rearrangement and barrier disruption. Microvasc Res. 2011;81:189–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Yang H, Wang H, Czura CJ, Tracey KJ. The cytokine activity of HMGB1. J Leukoc Biol. 2005;78:1–8.

    Article  CAS  PubMed  Google Scholar 

  56. Lee W, Ku SK, Lee YM, Bae JS. Anti-septic effects of glyceollins in HMGB1-induced inflammatory responses in vitro and in vivo. Food Chem Toxicol. 2014;63:1–8.

    Article  CAS  PubMed  Google Scholar 

  57. Qin YH, Dai SM, Tang GS, Zhang J, Ren D, Wang ZW, et al. HMGB1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of MAPK p38 through receptor for advanced glycation end products. J Immunol. 2009;183:6244–50.

    Article  CAS  PubMed  Google Scholar 

  58. Sun C, Liang C, Ren Y, Zhen Y, He Z, Wang H, et al. Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways. Basic Res Cardiol. 2009;104:42–9.

    Article  CAS  PubMed  Google Scholar 

  59. Schnittler HJ, Schneider SW, Raifer H, Luo F, Dieterich P, Just I, et al. Role of actin filaments in endothelial cell-cell adhesion and membrane stability under fluid shear stress. Pflugers Arch. 2001;442:675–87.

    Article  CAS  PubMed  Google Scholar 

  60. Friedl J, Puhlmann M, Bartlett DL, Libutti SK, Turner EN, Gnant MF, et al. Induction of permeability across endothelial cell monolayers by tumor necrosis factor (TNF) occurs via a tissue factor-dependent mechanism: relationship between the procoagulant and permeability effects of TNF. Blood. 2002;100:1334–9.

    CAS  PubMed  Google Scholar 

  61. Petrache I, Birukova A, Ramirez SI, Garcia JG, Verin AD. The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability. Am J Respir Cell Mol Biol. 2003;28:574–81.

    Article  CAS  PubMed  Google Scholar 

  62. Treutiger CJ, Mullins GE, Johansson AS, Rouhiainen A, Rauvala HM, Erlandsson-Harris H, et al. High mobility group 1 B-box mediates activation of human endothelium. J Intern Med. 2003;254:375–85.

    Article  CAS  PubMed  Google Scholar 

  63. Fiuza C, Bustin M, Talwar S, Tropea M, Gerstenberger E, Shelhamer JH, et al. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood. 2003;101:2652–60.

    Article  CAS  PubMed  Google Scholar 

  64. Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med. 2000;192:565–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Park JS, Arcaroli J, Yum HK, Yang H, Wang H, Yang KY, et al. Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am J Physiol Cell Physiol. 2003;284:C870–9.

    Article  CAS  PubMed  Google Scholar 

  66. Lin WN, Luo SF, Wu CB, Lin CC, Yang CM. Lipopolysaccharide induces VCAM-1 expression and neutrophil adhesion to human tracheal smooth muscle cells: involvement of Src/EGFR/PI3-K/Akt pathway. Toxicol Appl Pharmacol. 2008;228:256–68.

    Article  CAS  PubMed  Google Scholar 

  67. Ruiz-Torres MP, Perez-Rivero G, Rodriguez-Puyol M, Rodriguez-Puyol D, Diez-Marques ML. The leukocyte-endothelial cell interactions are modulated by extracellular matrix proteins. Cell Physiol Biochem. 2006;17:221–32.

    Article  CAS  PubMed  Google Scholar 

  68. Pinsky MR, Vincent JL, Deviere J, Alegre M, Kahn RJ, Dupont E. Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest. 1993;103:565–75.

    Article  CAS  PubMed  Google Scholar 

  69. Blackwell TS, Christman JW. Sepsis and cytokines: current status. Br J Anaesth. 1996;77:110–7.

    Article  CAS  PubMed  Google Scholar 

  70. Lockyer JM, Colladay JS, Alperin-Lea WL, Hammond T, Buda AJ. Inhibition of nuclear factor-kappaB-mediated adhesion molecule expression in human endothelial cells. Circ Res. 1998;82:314–20.

    Article  CAS  PubMed  Google Scholar 

  71. Marui N, Offermann MK, Swerlick R, Kunsch C, Rosen CA, Ahmad M, et al. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Investig. 1993;92:1866–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev. 2010;90:1507–46.

    Article  CAS  PubMed  Google Scholar 

  73. Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim JY, Strassheim D, et al. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol. 2006;290:C917–24.

    Article  CAS  PubMed  Google Scholar 

  74. Yang H, Tracey KJ. Targeting HMGB1 in inflammation. Biochim Biophys Acta. 2010;1799:149–56.

    Article  CAS  PubMed  Google Scholar 

  75. Palumbo R, Galvez BG, Pusterla T, De Marchis F, Cossu G, Marcu KB, et al. Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-kappaB activation. J Cell Biol. 2007;179:33–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Wang X, Feuerstein GZ, Gu JL, Lysko PG, Yue TL. Interleukin-1 beta induces expression of adhesion molecules in human vascular smooth muscle cells and enhances adhesion of leukocytes to smooth muscle cells. Atherosclerosis. 1995;115:89–98.

    Article  CAS  PubMed  Google Scholar 

  77. Sluiter W, Pietersma A, Lamers JM, Koster JF. Leukocyte adhesion molecules on the vascular endothelium: their role in the pathogenesis of cardiovascular disease and the mechanisms underlying their expression. J Cardiovasc Pharmacol. 1993;22(Suppl 4):S37–44.

    Article  CAS  PubMed  Google Scholar 

  78. Spiecker M, Darius H, Liao JK. A functional role of I kappa B-epsilon in endothelial cell activation. J Immunol. 2000;164:3316–22.

    Article  CAS  PubMed  Google Scholar 

  79. Branen L, Hovgaard L, Nitulescu M, Bengtsson E, Nilsson J, Jovinge S. Inhibition of tumor necrosis factor-alpha reduces atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 2004;24:2137–42.

    Article  CAS  PubMed  Google Scholar 

  80. Takeda R, Suzuki E, Satonaka H, Oba S, Nishimatsu H, Omata M, et al. Blockade of endogenous cytokines mitigates neointimal formation in obese Zucker rats. Circulation. 2005;111:1398–406.

    Article  CAS  PubMed  Google Scholar 

  81. Bae JS. Role of high mobility group box 1 in inflammatory disease: focus on sepsis. Arch Pharm Res. 2012;35:1511–23.

    Article  CAS  PubMed  Google Scholar 

  82. Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420:885–91.

    Article  CAS  PubMed  Google Scholar 

  83. Astiz ME, Rackow EC. Septic shock. Lancet. 1998;351:1501–5.

    Article  CAS  PubMed  Google Scholar 

  84. Satoh T, Kosaka K, Itoh K, Kobayashi A, Yamamoto M, Shimojo Y, et al. Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the Keap1/Nrf2 pathway via S-alkylation of targeted cysteines on Keap1. J Neurochem. 2008;104:1116–31.

    Article  CAS  PubMed  Google Scholar 

  85. Son PS, Park SA, Na HK, Jue DM, Kim S, Surh YJ. Piceatannol, a catechol-type polyphenol, inhibits phorbol ester-induced NF-{kappa}B activation and cyclooxygenase-2 expression in human breast epithelial cells: cysteine 179 of IKK{beta} as a potential target. Carcinogenesis. 2010;31:1442–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2012R1A5A2A42671316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Sup Bae.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Responsible Editor: John Di Battista.

Eun-Ju Yang and Sae-Kwang Ku contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, EJ., Ku, SK., Lee, W. et al. Inhibitory effects of polyozellin from Polyozellus multiplex on HMGB1-mediated septic responses. Inflamm. Res. 64, 733–746 (2015). https://doi.org/10.1007/s00011-015-0856-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-015-0856-3

Keywords

Navigation