Skip to main content
Log in

Approximation of Solutions of Fractional-Order Delayed Cellular Neural Network on \(\varvec{[0,\infty )}\)

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study a class of fractional-order cellular neural network containing delay. We prove the existence and uniqueness of the equilibrium solution followed by boundedness. Based on the theory of fractional calculus, we approximate the solution of the corresponding neural network model over the interval \([0,\infty )\) using discretization method with piecewise constant arguments and variation of constants formula for fractional differential equations. Furthermore, we conclude that the solution of the fractional-delayed system can be approximated for large t by the solution of the equation with piecewise constant arguments, if the corresponding linear system is exponentially stable. At the end, we give two numerical examples to validate our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leibniz, G.W.: Mathematische Schiften. Georg Olms Verlagsbuchhandlung, Hildesheim (1962)

    Google Scholar 

  2. Sabatier, J., Poullain, S., Latteux, P., Oustaloup, A.: Robust speed control of a low damped electromechanical system based on CRONE control: application to a four mass experimental test bench. Nonlinear Dyn. 38(1–4), 383–400 (2004)

    Article  MATH  Google Scholar 

  3. Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91(1), 134–147 (1971)

    Article  MATH  Google Scholar 

  4. Anastasio, T.J.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybernet. 72(1), 69–79 (1994)

    Article  Google Scholar 

  5. Mainardi, F., Raberto, M., Gorenflo, R., Scalas, E.: Fractional calculus and continuous-time finance II: the waiting-time distribution. Phys. A Stat. Mech. Appl. 287(3), 468–481 (2000)

    Article  MATH  Google Scholar 

  6. Abbas, S., Erturk, V.S., Momani, S.: Dynamical analysis of the Irving–Mullineux oscillator equation of fractional order. Signal Process. 102, 171–176 (2014)

    Article  Google Scholar 

  7. Abbas, S., Mahto, L., Favini, A., Hafayed, M.: Dynamical study of fractional model of allelopathic stimulatory phytoplankton species. Differ. Equ. Dyn. Syst. 24(3),267–280 (2016)

  8. Abbas, S.: Existence of solutions to fractional order ordinary and delay differential equations and applications. Electron. J. Differ. Equ. 9, 1–11 (2011)

    MathSciNet  Google Scholar 

  9. Abbas, S., Banerjee, M., Momani, S.: Dynamical analysis of fractional-order modified logistic model. Comput. Math. Appl. 62(3), 1098–1104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chang, Y.K., Anguraj, A., Karthikeyan, P.: Existence results for initial value problems with integral conditions for impulsive fractional differential equations. J. Fract. Calcul. Appl. 2(7), 1–10 (2012)

    Google Scholar 

  11. El-Sayed, A.M.A., Salman, S.M.: On a discretization process of fractional-order Riccati differential equation. J. Fract. Calcul. Appl. 4(2), 251–259 (2013)

    Google Scholar 

  12. Raheem, Z.F., El Salman, S.M.: On a discretization process of fractional-order logistic differential equation. J. Egypt. Math. Soc. 22(3), 407–412 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Agarwal, R.P., El-Sayed, A.M.A., Salman, S.M.: Fractional-order Chuas system: discretization, bifurcation and chaos. Adv. Differ. Equ. 2013(1), 320 (2013)

    Article  MathSciNet  Google Scholar 

  14. Chen, L., Chai, Y., Wu, R., Ma, T., Zhai, H.: Dynamic analysis of a class of fractional-order neural networks with delay. Neurocomputing 111, 190–194 (2013)

    Article  Google Scholar 

  15. Wang, H., Yu, Y., Wen, G.: Stability analysis of fractional-order Hopfield neural networks with time delays. Neural Netw. 55, 98–109 (2014)

    Article  MATH  Google Scholar 

  16. Chen, H., Zhong, S., Yang, J.: A new globally exponential stability criterion for neural networks with discrete and distributed delays. Math. Probl. Eng. 2015, 1–9 (2015)

  17. Wu, R.C., Hei, X.D., Chen, L.P.: Finite-time stability of fractional-order neural networks with delay. Commun. Theoret. Phys. 60, 189–193 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lien, C.H., Chung, L.Y.: Global asymptotic stability for cellular neural networks with discrete and distributed time-varying delays. Chaos Solitons Fract. 34(4), 1213–1219 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, T., Luo, Q., Sun, C., Zhang, B.: Exponential stability of recurrent neural networks with time-varying discrete and distributed delays. Nonlinear Anal. Real World Appl. 10(4), 2581–2589 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pinto, M., Robledo, G.: Controllability and observability for a linear time varying system with piecewise constant delay. Acta Applicandae Mathematicae 136.1, 193–216 (2014)

  21. Chiu, K.S., Pinto, M., Jeng, J.C.: Existence and global convergence of periodic solutions in recurrent neural network models with a general piecewise alternately advanced and retarded argument. Acta Applicandae Mathematicae 133(1), 133–152 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Abbas, S., Xia, Y.: Existence and attractivity of k-almost automorphic sequence solution of a model of cellular neural networks with delay. Acta Mathematica Scientia 33(1), 290–302 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tyagi, S., Abbas, S., Pinto, M., Sepúlveda, D.: Uniform Euler approximation of solutions of fractional-order delayed cellular neural network on bounded intervals. Comput. Math. Appl. (2016). doi:10.1016/j.camwa.2016.04.007

  24. Huang, Z., Wang, X., Xia, Y.: Exponential attractor of -almost periodic sequence solution of discrete-time bidirectional neural networks. Simul. Modell. Pract. Theory 18(3), 317–337 (2010)

    Article  Google Scholar 

  25. Deng, W., Changpin, L., Jinhu, L.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48(4), 409–416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sierociuk, D., Grzegorz, S., Andrzej, D.: Discrete fractional order artificial neural network. Acta Mechanica et Automatica 5, 128–132 (2011)

    Google Scholar 

  27. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations, vol. 204. Elsevier Science Limited, Amsterdam (2006)

  28. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  29. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, vol. 198. Academic Press, New York (1998)

  30. Yang, X., Song, Q., Liu, Y., Zhao, Z.: Uniform stability analysis of fractional-order BAM neural networks with delays in the leakage terms. In: Abstract and Applied Analysis. Hindawi Publishing Corporation, Cairo (2014)

  31. Tang, Y., Wang, Z., Fang, J.: Pinning control of fractional-order weighted complex networks. Chaos: an interdisciplinary. J. Nonlinear Sci. 19(1), 013112 (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Abbas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, S., Abbas, S., Pinto, M. et al. Approximation of Solutions of Fractional-Order Delayed Cellular Neural Network on \(\varvec{[0,\infty )}\) . Mediterr. J. Math. 14, 23 (2017). https://doi.org/10.1007/s00009-016-0826-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-016-0826-1

Mathematics Subject Classification

Keywords

Navigation