Skip to main content
Log in

Impulsive fractional-order neural networks with time-varying delays: almost periodic solutions

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study the problems of existence and global asymptotic stability of almost periodic solutions for a cellular neural network of fractional order with time-varying delays and impulses. The impulses are realized at fixed moments of time and can be considered as a control. The main results are obtained by employing the fractional Lyapunov method and fractional comparison principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chua LO, Yang L (1988) Cellular neural networks: theory. IEEE Trans Circuits Syst 35:1257–1272

    Article  MathSciNet  MATH  Google Scholar 

  2. Chua LO, Yang L (1988) Cellular neural networks: applications. IEEE Trans Circuits Syst 35:1273–1290

    Article  MathSciNet  Google Scholar 

  3. Arbib M (1987) Branins, machines, and mathematics. Springer, New York

    Book  Google Scholar 

  4. Haykin S (1998) Neural networks: a comprehensive foundation. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  5. Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc Natl Acad Sci USA 81:3088–3092

    Article  MATH  Google Scholar 

  6. Arik S, Tavsanoglu V (2000) On the global asymptotic stability of delayed cellular neural networks. IEEE Trans Circuits Syst I(47):571–574

    Article  MathSciNet  MATH  Google Scholar 

  7. Li X, Rakkiyappan R, Velmurugan G (2015) Dissipativity analysis of memristor-based complex-valued neural networks with time-varying delays. Inf Sci 294:645–665

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang L, Cao J (2009) Global robust point dissipativity of interval neural networks with mixed time-varying delays. Nonlinear Dyn 55:169–178

    Article  MathSciNet  MATH  Google Scholar 

  9. Ahmad S, Stamova IM (2008) Global exponential stability for impulsive cellular neural networks with time-varying delays. Nonlinear Anal 69:786–795

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen W-H, Zheng W-X (2009) Global exponential stability of impulsive neural networks with variable delay: an LMI approach. IEEE Trans Circuits Syst I(56):1248–1259

    Article  MathSciNet  Google Scholar 

  11. Lu X, Chen W-H, Du R (2011) Stability analysis of delayed cellular neural networks with impulsive effects. IMA J Math Control Inf 28:487–506

    Article  MathSciNet  MATH  Google Scholar 

  12. Stamova IM, Stamov T, Li X (2014) Global exponential stability of a class of impulsive cellular neural networks with supremums. Int J Adapt Control 28:1227–1239

    Article  MathSciNet  MATH  Google Scholar 

  13. Diethelm K (2010) The analysis of fractional differential equations. An application-oriented exposition using differential operators of caputo type. Springer, Berlin

    MATH  Google Scholar 

  14. Hilfer R (2000) Applications of fractional calculus in physics. World Scientific, Singapore

    Book  MATH  Google Scholar 

  15. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  16. Babakhani A, Baleanu D, Khanbabaie R (2012) Hopf bifurcation for a class of fractional differential equations with delay. Nonlinear Dyn 69:721–729

    Article  MathSciNet  MATH  Google Scholar 

  17. Benchohra M, Henderson J, Ntouyas SK, Ouahab A (2008) Existence results for fractional order functional differential equations with infinite delay. J Math Anal Appl 338:1340–1350

    Article  MathSciNet  MATH  Google Scholar 

  18. Stamova I, Stamov G (2013) Lipschitz stability criteria for functional differential systems of fractional order. J Math Phys 54:043502

    Article  MathSciNet  MATH  Google Scholar 

  19. Ahmad B, Nieto JJ (2011) Existence of solutions for impulsive anti-periodic boundary value problems of fractional order. Taiwan J Math 15:981–993

    Article  MathSciNet  MATH  Google Scholar 

  20. Cao J, Chen H (2012) Impulsive fractional differential equations with nonlinear boundary conditions. Math Comput Model 55:303–311

    Article  MathSciNet  MATH  Google Scholar 

  21. Stamova IM (2014) Global stability of impulsive fractional differential equations. Appl Math Comput 237:605–612

    MathSciNet  MATH  Google Scholar 

  22. Abbas S, Benchohra M (2010) Impulsive partial hyperbolic functional differential equations of fractional order with state-dependent delay. Fract Calc Appl Anal 13:225–244

    MathSciNet  MATH  Google Scholar 

  23. Stamova IM, Stamov GT (2014) Stability analysis of impulsive functional systems of fractional order. Commun Nonlinear Sci Numer Simul 19:702–709

    Article  MathSciNet  Google Scholar 

  24. Wang H (2012) Existence results for fractional functional differential equations with impulses. J Appl Math Comput 38:85–101

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen L, Qu J, Chai Y, Wu R, Qi G (2013) Synchronization of a class of fractional-order chaotic neural networks. Entropy 15:3265–3276

    Article  MathSciNet  MATH  Google Scholar 

  26. Kaslik E, Sivasundaram S (2012) Nonlinear dynamics and chaos in fractional order neural networks. Neural Netw 32:245–256

    Article  MATH  Google Scholar 

  27. Zhou S, Li H, Zhua Z (2008) Chaos control and synchronization in a fractional neuron network system. Chaos Soliton Fract 36:973–984

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang H, Yu Y, Wen G (2014) Stability analysis of fractional-order Hopfield neural networks with time delays. Neural Netw 55:98–109

    Article  MATH  Google Scholar 

  29. Wu R, Hei X, Chen L (2013) Finite-time stability of fractional-order neural networks with delay. Commun Theor Phys 60:189–193

    Article  MathSciNet  MATH  Google Scholar 

  30. Stamova IM (2014) Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays. Nonlinear Dyn 77:1251–1260

    Article  MathSciNet  MATH  Google Scholar 

  31. Xiang H, Cao J (2009) Almost periodic solution of Cohen–Grossberg neural networks with bounded and unbounded delays. Nonlinear Anal Real World Appl 10:2407–2419

    Article  MathSciNet  MATH  Google Scholar 

  32. Huang X, Cao J, Ho DWC (2006) Existence and attractivity of almost periodic solution for recurrent neural networks with unbounded delays and variable coefficients. Nonlinear Dyn 45:337–351

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang X, Cao J, Huang C, Long Y (2010) Existence and global exponential stability of almost periodic solutions for SICNNs with nonlinear behaved functions and mixed delays. Abstr Appl Anal. Article ID 915451

  34. Zhang H (2014) Existence and stability of almost periodic solutions for CNNs with continuously distributed leakage delays. Neural Comput Appl 24:1135–1146

    Article  Google Scholar 

  35. Liu Y, Huang Z, Chen L (2012) Almost periodic solution of impulsive Hopfield neural networks with finite distributed delays. Neural Comut Appl 21:821–831

    Article  Google Scholar 

  36. Stamov GT (2004) Impulsive cellular neural networks and almost periodicity. Proc Jpn Acad Ser A Math Sci 80:198–203

    Article  MathSciNet  MATH  Google Scholar 

  37. Stamov GT (2012) Almost periodic solutions of impulsive differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  38. Stamov GT, Stamova IM (2007) Almost periodic solutions for impulsive neural networks with delay. Appl Math Model 31:1263–1270

    Article  MATH  Google Scholar 

  39. Stamov GT, Stamova IM (2014) Almost periodic solutions for impulsive fractional differential equations. Dyn Syst 29:119–132

    Article  MathSciNet  MATH  Google Scholar 

  40. Li Y, Chen Y, Podlubny I (2010) Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput Math Appl 59:1810–1821

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gani Stamov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stamov, G., Stamova, I. Impulsive fractional-order neural networks with time-varying delays: almost periodic solutions. Neural Comput & Applic 28, 3307–3316 (2017). https://doi.org/10.1007/s00521-016-2229-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2229-4

Keywords

Navigation