Skip to main content
Log in

Differential gene expression profiling in B[k]F-exposed marine medaka,Oryzias javanicus by subtractive hybridization

  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Benzo[k]fluoranthene (B[k]F) is one of numerous polycyclic aromatic hydrocarbons (PAHs) which is a persistent environmental contaminant in air and water. Upon B[k]F exposure, differential gene expression profiling was conducted in marine medaka fish (Oryzias javanicus) using subtractive hybridization. As a result, forty two differentially expressed candidate genes were induced in B[k]F-exposed fish as compared to control group, and the genes were associated with general metabolism, signal transduction, cell cycle, immune response, cytoskeleton, development, nucleotide/protein binding and some were non-categorized. These identified gene candidates have great potential to be developed as biomarkers for the identification of effects of B[k]F exposure in the environment. The results obtained in this study will offer insight to the physiological change induced by B[k]F exposure and will help assess the molecular mechanisms of B[k]F toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reynaud, S. & Deschaux, P. The effects of polycyclic aromatic hydrocarbons on the immune system of fish: a review.Aquat. Toxicol. 77, 229–238 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. Davila, D. R.et al. Role of alterations in Ca(2+)-associated signaling pathways in the immunotoxicity of polycyclic aromatic hydrocarbons.J. Toxicol. Environ. Health 45, 101–126 (1995).

    Article  PubMed  CAS  Google Scholar 

  3. Warshawsky, D.et al. Biotransformation of benzo[a] pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light.Chem. Biol. Interact. 97, 131–148 (1995).

    Article  PubMed  CAS  Google Scholar 

  4. Nesto, N.et al. Bioaccumulation and biomarker responses of trace metals and micro-organic pollutants in mussels and fish from the Lagoon of Venice, Italy.Mar. Pollut. Bull. 55, 469–484 (2007).

    Article  PubMed  CAS  Google Scholar 

  5. Cheikyula, J. O., Koyama, J. & Uno, S. Comparative study of bioconcentration and EROD activity induction in the Japanese flounder, red sea bream, and Java medaka exposed to polycyclic aromatic hydrocarbons.Environ. Toxicol. 23, 354–362 (2008).

    Article  PubMed  CAS  Google Scholar 

  6. van der Oost, R., Beyer, J. & Vermeulen, N. P. E. Fish bioaccumulation and biomarkers in environmental risk assessment: a review.Environ. Toxicol. Pharmacol. 13, 57–149 (2003).

    Article  Google Scholar 

  7. Cossins, A. R. & Crawford, D. L. Fish as models for environmental genomics.Nat. Rev. Genet. 6, 324–333 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. Yu, R. M. K.et al. Induction of hepatic choriogenin mRNA expression in male marine medaka: A highly sensitive biomarker for environmental estrogens.Aquat. Toxicol. 77, 348–358 (2006).

    Article  PubMed  CAS  Google Scholar 

  9. Woo, S., Yum, S., Kim, D.-W. & Park, H.-S. Transcripts level responses in a marine medaka (Oryzias javanicus) exposed to organophosphorus pesticide.Compar. Biochem. Physiol. Part C: Toxicology & Pharmacology 149, 427–432 (2009).

    Article  Google Scholar 

  10. Gehring, W. J. & Hiromi, Y. Homeotic genes and the homeobox.Annu. Rev. Genet. 20, 147–173 (1986).

    Article  PubMed  CAS  Google Scholar 

  11. Shah, N. & Sukumar, S. The Hox genes and their roles in oncogenesis.Nat. Rev. Cancer 10, 361–371.

  12. Ashley, R. H. Challenging accepted ion channel biology: p64 and the CLIC family of putative intracellular anion channel proteins (Review).Mol. Membr. Biol. 20, 1–11 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. Averaimo, S., Milton, R. H., Duchen, M. R. & Mazzanti, M. Chloride intracellular channel 1 (CLIC1): Sensor and effector during oxidative stress.FEBS Lett. 584, 2076–2084.

  14. Petrova, D. T.et al. Expression of chloride intracellular channel protein 1 (CLIC1) and tumor protein D52 (TPD52) as potential biomarkers for colorectal cancer.Clin. Biochem. 41, 1224–1236 (2008).

    Article  PubMed  CAS  Google Scholar 

  15. Park, J. H.et al. Functional expression of recombinant human ribonuclease/angiogenin inhibitor in stably transformed Drosophila melanogaster S2 cells.Cytotechnology 57, 93–99 (2008).

    Article  PubMed  CAS  Google Scholar 

  16. Kerbel, R. S. A cancer therapy resistant to resistance.Nature 390, 335–336 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. Wang, Z.et al. RACK1, an excellent predictor for poor clinical outcome in oral squamous carcinoma, similar to Ki67.Eur. J. Cancer 45, 490–496 (2009).

    Article  PubMed  CAS  Google Scholar 

  18. Liszewski, M. K.et al. Control of the complement system.Adv. Immunol. 61, 201–283 (1996).

    Article  PubMed  CAS  Google Scholar 

  19. Kishore, U. & Reid, K. B. M. C1q: Structure, function, and receptors.Immunopharmacology 49, 159–170 (2000).

    Article  PubMed  CAS  Google Scholar 

  20. Kishore, U.et al. C1q and tumor necrosis factor superfamily: modularity and versatility.Trends Immunol. 25, 551–561 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. Campbell, R. D., Gagnon, J. & Porter, R. R. Amino acid sequence around the thiol and reactive acyl groups of human complement component C4.Biochem. J. 199, 359–370 (1981).

    PubMed  CAS  Google Scholar 

  22. Wei, W.et al. Cloning and molecular characterization of two complement Bf/C2 genes in large yellow croaker (Pseudosciaena crocea).Fish. Shellfish Immun. 27, 285–295 (2009).

    Article  CAS  Google Scholar 

  23. Sambrook, J. G., Figueroa, F. & Beck, S. A genomewide survey of Major Histocompatibility Complex (MHC) genes and their paralogues in zebrafish.BMC Genomics 6, 152 (2005).

    Article  PubMed  Google Scholar 

  24. Evrin, P. E. & Nilsson, K. Beta 2-microglobulin production in vitro by human hematopoietic, mesenchymal, and epithelial cells.J. Immunol. 112, 137–144 (1974).

    PubMed  CAS  Google Scholar 

  25. Cassuto, J. P.et al. [beta]2-Microglobulin, a tumour marker of lymphoproliferative disorder.The Lancet 312, 108–109 (1978).

    Article  Google Scholar 

  26. Millar, R. P. GnRHs and GnRH receptors.Anim. Reprodu. Sci. 88, 5–28 (2005).

    Article  CAS  Google Scholar 

  27. Grundker, C., Huschmand Nia, A. & Emons, G. Gonadotropin-releasing hormone receptor-targeted gene therapy of gynecologic cancers.Mol. Cancer Ther. 4, 225–231 (2005).

    Article  PubMed  Google Scholar 

  28. Santini, M. S. & Ronderos, J. R. Allatotropin-like peptide released by Malpighian tubules induces hindgut activity associated with diuresis in the Chagas disease vector Triatoma infestans (Klug).J. Exp. Biol. 210, 1986–1991 (2007).

    Article  PubMed  CAS  Google Scholar 

  29. Sterkel, M., Riccillo, F. L. & Ronderos, J. R. Cardioacceleratory and myostimulatory activity of allatotropin in Triatoma infestans.Compar. Biochem. Physiol. —Part A: Molecular & Integrative Physiology 155, 371–377.

  30. Rooney, P. H.et al. The role of cytochrome P450 in cytotoxic bioactivation: future therapeutic directions.Curr. Cancer Drug Targets 4, 257–265 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. Schlezinger, J. J. & Stegeman, J. J. Induction and suppression of cytochrome P450 1A by 3,3′,4,4′,5-pentachlorobiphenyl and its relationship to oxidative stress in the marine fish scup (Stenotomus chrysops).Aquat. Toxicol. 52, 101–115 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. Yang, F. et al. Human transferrin: cDNA characterization and chromosomal localization.Proc. Natl. Acad. Sci. USA 81, 2752–2756 (1984).

    Article  PubMed  CAS  Google Scholar 

  33. Chen, J., Shi, Y. H. & Li, M. Y. Changes in transferrin and hepcidin genes expression in the liver of the fish Pseudosciaena crocea following exposure to cadmium.Arch. Toxicol. 82, 525–530 (2008).

    Article  PubMed  CAS  Google Scholar 

  34. Fong, W. P., Cheng, C. H. & Tang, W. K. Antiquitin, a relatively unexplored member in the superfamily of aldehyde dehydrogenases with diversified physiological functions.Cell Mol. Life Sci. 63, 2881–2885 (2006).

    Article  PubMed  CAS  Google Scholar 

  35. Rodrigues, S. M.et al. Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress.J. Exp. Bot. 57, 1909–1918 (2006).

    Article  PubMed  CAS  Google Scholar 

  36. Benjamin, I. J. & McMillan, D. R. Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease.Circ. Res. 83, 117–132 (1998).

    PubMed  CAS  Google Scholar 

  37. Bukau, B. & Horwich, A. L. The Hsp70 and Hsp60 chaperone machines.Cell 92, 351–366 (1998).

    Article  PubMed  CAS  Google Scholar 

  38. Lucas, K. A.et al. Guanylyl cyclases and signaling by cyclic GMP.Pharmacol. Rev. 52, 375–414 (2000).

    PubMed  CAS  Google Scholar 

  39. Lubbe, W. J.et al. Guanylyl cyclase C prevents colon cancer metastasis by regulating tumor epithelial cell matrix metalloproteinase-9.Cancer Res. 69, 3529–3536 (2009).

    Article  PubMed  CAS  Google Scholar 

  40. Robinson, M. S. Adaptable adaptors for coated vesicles.Trends Cell Biol. 14, 167–174 (2004).

    Article  PubMed  CAS  Google Scholar 

  41. Wu, F. & Yao, P. J. Clathrin-mediated endocytosis and Alzheimer’s disease: An update.Ageing Res. Rev. 8, 147–149 (2009).

    Article  PubMed  Google Scholar 

  42. Kadenbach, B., Arnold, S., Lee, I. & Huetemann, M. The possible role of cytochrome c oxidase in stressinduced apoptosis and degenerative diseases.Biochimica et Biophysica Acta (BBA) — Bioenergetics 1655, 400–408 (2004).

    Article  CAS  Google Scholar 

  43. Payne, C. M.et al. Crypt-restricted loss and decreased protein expression of cytochrome C oxidase subunit I as potential hypothesis-driven biomarkers of colon cancer risk.Cancer Epidemiol. Biomarkers Prev. 14, 2066–2075 (2005).

    Article  PubMed  CAS  Google Scholar 

  44. Capaldi, R. A. & Aggeler, R. Mechanism of the F1F0-type ATP synthase, a biological rotary motor.Trends Biochem. Sci. 27, 154–160 (2002).

    Article  PubMed  CAS  Google Scholar 

  45. Grainger, R. J. & Beggs, J. D. Prp8 protein: at the heart of the spliceosome.RNA 11, 533–557 (2005).

    Article  PubMed  CAS  Google Scholar 

  46. McKie, A. B.et al. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13).Hum. Mol. Genet. 10, 1555–1562 (2001).

    Article  PubMed  CAS  Google Scholar 

  47. Ma, J., Liao, X. L., Lou, B. & Wu, M. P. Role of apolipoprotein A-I in protecting against endotoxin toxicity.Acta Biochim. Biophys. Sin. (Shanghai) 36, 419–424 (2004).

    Article  CAS  Google Scholar 

  48. Duverger, N.et al. Protection against atherogenesis in mice mediated by human apolipoprotein A-IV.Science 273, 966–968 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungshic Yum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, HY., Woo, S., Won, H. et al. Differential gene expression profiling in B[k]F-exposed marine medaka,Oryzias javanicus by subtractive hybridization. Toxicol. Environ. Health. Sci. 2, 231–237 (2010). https://doi.org/10.1007/BF03217488

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03217488

Keywords

Navigation