Skip to main content
Log in

Ligninolytic ability and potential biotechnology applications of the South American FungusPleurotus laciniatocrenatus

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The extracellular ligninolytic enzyme system ofPleurotus laciniatocrenatus, grown under different culture conditions, was characterized and the ability of this strain to degrade different components ofEucalyptus globulus wood was determined. In shaken liquid cultures grown on a C-limited medium supplemented with yeast extract (0.1 %) and peptone (0.5 %), the fungus produced extracellular aryl-alcohol oxidase (Aao), laccase (Lac), manganese-dependent peroxidase (MnP) and manganese-independent peroxidase (MiP) activities, their maximum levels being, respectively, about 600, 50, 1360, and 920 pkat/mL. The supplementation of 1 mmol/L vanillic acid and 150 µmol/L CuSO4 produced an increase of Lac activity levels up to 4-fold and 68.3-fold, respectively. No significant differences were found in the levels of the other ligninolytic enzyme activities when compared to the basal medium. Solid-state fermentation cultures onE. globulus wood chips revealed Lac and MiP activities. These cultures showed degradative activity on lignin and lipophilic wood extractives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdullah N., Zafar S.I.: Lignocellulose biodegradation by white-rotBasidiomycetes: overview.Internat.J.Mushroom Sci.2, 59–78 (1999).

    CAS  Google Scholar 

  • Bourbonnais R., Paice M.G.: Oxidative enzymes from the lignin-degrading fungusPleurotus sajor-caju, pp. 472–481 in N.G. Lewis, M.G. Paice (Eds):Plant Cell Wall Polymers: Biogenesis and Biodegradation.ACS Symp. Ser. Vol.399. American Chemical Society, Washington (DC) 1989.

    Google Scholar 

  • Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal.Biochem.72, 248–254 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Buchert J., Mustranta A., Kontkanen H., Karlsson S., Tenkanen M., Holmbom B.: Enzymatic control of wood extractives.Proc. 11th Internat. Symp. Wood Pulp Chemistry3, 375–378 (2001).

    Google Scholar 

  • Camarero S., Böckle B., Martínez M.J., Martínez A.T.: Manganese-mediated lignin degradation byPleurotus pulmonarius.Appl.Environ.Microbiol.62, 1070–1072 (1996).

    PubMed  CAS  Google Scholar 

  • Cing S., Asma(Hamamci) D., Apohan E., Yeşilada O.: Decolorization of textile dyeing wastewater byPhanerochaete chrysosporium.Folia Microbiol.47, 639–642 (2003).

    Google Scholar 

  • Cohen R., Persky L., Hadar Y.: Biotechnological applications and potential of wood-degrading mushrooms of the genusPleurotus.Appl.Microbiol.Biotechnol.58, 582–594 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Collins P.J., Dobson A.D.W.: Regulation of laccase gene transcription inTrametes vesicolor.Appl.Environ.Microbiol.63, 3444–3450 (1997).

    PubMed  CAS  Google Scholar 

  • Dittmer K., Patel N., Dhawale S.W., Dhawale S.S.: Production of multiple laccase isoforms byPhanerochaete chrysosporium grown under nutrient sufficiency.FEMS Microbiol.Lett.149, 65–70 (1997).

    Article  CAS  Google Scholar 

  • Eichlerová I., Homolka L., Nerud F.: Decolorization of orange G byPleurotus ostreatus monokaryotic isolates with different lac-case activity.Folia Microbiol.48, 775–779 (2003).

    Article  Google Scholar 

  • Farnet A.M., Tagger S., Le Petit J.: Effects of copper and aromatic inducers on the laccases of the white-rot fungusMarasmius quercophilus.Acad.Sci.Paris. Sciences de la vie322, 499–503 (1999).

    CAS  Google Scholar 

  • Giardina P., Palmieri G., Fontanella B., Rivieccio V., Sannia G.: Manganese peroxidase isoenzymes produced byPleurotus ostreatus grown on wood sawdust.Arch.Biochem.Biophys.376, 171–179 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Guillén F., Martínez A.T., Martínez M.J., Evans C.S.: Hydrogen peroxide-producing system ofPleurotus eryngii involving the extracellular enzyme aryl-alcohol oxidase.Appl.Microbiol.Biotechnol.41, 465–470 (1994).

    Google Scholar 

  • Guillén F., Gómez-Toribio V., Muñoz C., Martínez M.J., Martínez A.T.: Production of hydroxyl radical by the synergistic action of fungal laccase and aryl-alcohol oxidase.Arch.Biochem.Biophys.382, 142–147 (2000).

    Article  CAS  Google Scholar 

  • Hatakka A.: Lignin-modifying enzymes from selected white-rot fungi — production and role in lignin degradation.FEMS Microbiol.Rev.13, 125–135 (1994).

    Article  CAS  Google Scholar 

  • Hawksworth D.L.: The magnitude of fungal diversity: the 1.5 million species estimate revisited.Mycol.Res.105, 1422–1432 (2001).

    Article  Google Scholar 

  • Heinfling A., Ruiz-Dueñas F.J., Martínez M.J., Bergbauer M., Szewzyk U., Martínez A.T.: A study on reducing substrates of manganese-oxidizing peroxidases fromPleurotus eryngii andBjerkandera adusta.FEBS Lett.428, 141–146 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Johannes C., Majcherczyk A.: Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems.Appl.Environ.Microbiol.66, 524–528 (2000).

    Article  PubMed  CAS  Google Scholar 

  • de Jong E., Field J.A., de Bont J.A.M.: Evidence for a new extracellular peroxidase: manganese inhibited peroxidase from the white-rot fungusBjerkandera sp. BOS55.FEBS Lett.299, 107–110 (1992).

    Article  PubMed  Google Scholar 

  • Kaal E.E.J., de Jong E., Field J.A.: Stimulation of ligninolytic peroxidase activity by nitrogen nutrients in the white-rot fungusBjerkandera sp. strain BOS55.Appl.Environ.Microbiol.59, 4031–4036 (1993).

    PubMed  CAS  Google Scholar 

  • Kahraman S., Yeşilada O.: Decolorization and bioremediation of molasses wastewater by white-rot fungi in a semi-solid-state condition.Folia Microbiol.48, 525–528 (2003).

    Article  CAS  Google Scholar 

  • Levin L., Forchiassin F., Ramos A.M.: Copper induction of lignin-modifying enzymes in the white-rot fungusTrametes trogii.Mycologia94, 377–383 (2002).

    Article  CAS  Google Scholar 

  • Martínez A.T., Camarero S., Guillén F., Gutiérrez A., Muñoz C., Varela E., Martínez M.J., Barrasa J.M., Ruel K., Pelayo J.: Progress in biopulping of non-woody materials: chemical, enzymatic and ultrastructural aspects of wheat straw delignification with ligninolytic fungi from the genusPleurotus.FEMS Microbiol.Rev.13, 265–274 (1994).

    Article  Google Scholar 

  • Martínez M.J., Ruiz-Dueñas F.J., Guillén F., Martinez A.T.: Purification and catalytic properties of two manganese-peroxidase isoenzymes fromPleurotus eryngii.Eur.J.Biochem.237, 424–432 (1996).

    Article  PubMed  Google Scholar 

  • Martínez M.J., Barrasa J.M., Gutiérrez A., del Río J.C., Martínez A.T.: Fungal screening for biological removal of extractives fromEucalyptus globulus wood.Can.J.Bot.77, 1513–1522 (1999).

    Article  Google Scholar 

  • Mester T., Field J.A.: Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced byBjerkandera species strain BOS55 in the absence of manganese.J.Biol.Chem.273, 15412–15417 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Muñoz C., Guillén F., Martínez A.T., Martínez M.J.: Induction and characterization of laccase in the ligninolytic fungusPleurotus eryngii.Curr.Microbiol.34, 1–5 (1997).

    Article  PubMed  Google Scholar 

  • Novotný Č., Erbanová P., Šašek V., Kubátová A., Cajthaml T., Lang E., Krahl J., Zadrazil F.: Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white-rot fungi.Biodegradation10, 159–168 (1999).

    Article  PubMed  Google Scholar 

  • Palmieri G., Giardina P., Bianco C., Fontanella B., Sannia G.: Copper induction of laccase isoenzymes in the ligninolytic fungusPleurotus ostreatus.Appl.Environ.Microbiol.66, 920–924 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Del Rio J.C., Gutiérrez A., Martínez M.J., Martínez A.T.: Identification of a novel series of alkylitaconic acids in wood cultures ofCeriporiopsis subvermispora by gas chromatography/mass spectrometry.Rapid Commun.Mass Spectrom.16, 62–68 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez E., Nuero O., Guillén F., Martínez A.T., Martínez M.J.: Degradation of phenolic and non-phenolic aromatic pollutants by fourPleurotus species: the role of laccase and versatile peroxidase.Soil Biol.Biochem.36, 909–916 (2004).

    Article  CAS  Google Scholar 

  • Rogalski J., Lundell T., Leonowicz A., Hatakka A.: Production of laccase, lignin peroxidase and manganese-dependent peroxidase by various strains ofTrametes versicolor depending on culture conditions.Acta Microbiol.Polon.40, 221–234 (1991).

    CAS  Google Scholar 

  • Ruiz-Dueñas F.J., Guillén F., Camarero S., Pérez-Boada M., Martínez M.J., Martínez A.T.: Regulation of peroxidase transcript levels in liquid cultures of the ligninolytic fungusPleurotus eryngii.Appl.Environ.Microbiol.65, 4458–4463 (1999).

    PubMed  Google Scholar 

  • Ryvarden L.: Biodiversity in polypore fungi. A comparison between tropical Africa and America.Rev.Biol.Trop.44, 125–129 (1996).

    Google Scholar 

  • Salusso M., Moraña L.B.: Cultivo dePleurotus laciniatocrenatus en Argentina.Rev.Iberoam.Micol.14, 129–130 (1997).

    PubMed  CAS  Google Scholar 

  • Sannia G., Giardina P., Luna M., Rossi M., Buonocore F.: Laccase fromPleurotus ostreatus.Biotechnol.Lett.8, 797–800 (1986).

    Article  CAS  Google Scholar 

  • Sannia G., Limongi P., Cocca E., Buonocore F., Nitti G., Giardina P.: Purification and characterization of a veratryl-alcohol oxidase enzyme from the lignin degrading basidiomycetePleurotus ostreatus.Biochim.Biophys.Acta1073, 114–119 (1991).

    PubMed  CAS  Google Scholar 

  • Saparrat M.C.N., Bucsinszky A.M.M., Tournier H.A., Cabello M.N., Arambarri A.M.: Extracellular ABTS-oxidizing activity of autochthonous fungal strains from Argentina in solid medium.Rev.Iberoam.Micol.17, 64–68 (2000).

    PubMed  CAS  Google Scholar 

  • Saparrat M.C.N., Guillén F., Arambarri A.M., Martínez A.T., Martínez M.J.: Induction, isolation, and characterization of two laccases from the white-rot basidiomyceteCoriolopsis rigida.Appl.Environ.Microbiol.68, 1534–1540 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Sarkar S., Martínez A.T., Martínez M.J.: Biochemical and molecular characterization of a manganese peroxidase isoenzyme fromPleurotus ostreatus.Biochim.Biophys.Acta1339, 23–30 (1997).

    PubMed  CAS  Google Scholar 

  • Schlosser D., Grey R., Fritsche W.: Patterns of ligninolytic enzymes inTrametes versicolor: distribution of extra- and intracellular enzyme activities during cultivation on glucose, wheat straw and beech wood.Appl.Microbiol.Biotechnol.47, 412–418 (1997).

    Article  CAS  Google Scholar 

  • Somogyi M.: A new reagent for determination of sugars.J.Biol.Chem.160, 61–73 (1945).

    CAS  Google Scholar 

  • TAPPI: Test Methods 1992–1993. Technical Association of the Pulp and Paper Industry, Atlanta (USA) 1993.

  • Tomšovský M., Homolka L.: Laccase and other ligninolytic enzyme activities of selected strains ofTrametes spp. from different localities and substrates.Folia Microbiol.48, 413–416 (2003).

    Article  Google Scholar 

  • Wong Y., Yu J.: Laccase-catalyzed decolorization of synthetic dyes.Water Res.33, 3512–3520 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. N. Saparrat.

Additional information

The first author is recipient of a scholarship from theNational Council of Scientific and Technological Research. This research was supported by grants from theNational Council of Scientific and Technological Research and theNational University of La Plata, Argentina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saparrat, M.C.N., Guillén, F. Ligninolytic ability and potential biotechnology applications of the South American FungusPleurotus laciniatocrenatus . Folia Microbiol 50, 155–160 (2005). https://doi.org/10.1007/BF02931465

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931465

Keywords

Navigation