Skip to main content
Log in

Entropy, Lyapunov exponents, and mean free path for billiards

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We review known results and derive some new ones about the mean free path, Kolmogorov-Sinai entropy, and Lyapunov exponents for billiard-type dynamical systems. We focus on exact and asymptotic formulas for these quantities. The dynamical systems covered in this paper include the priodic Lorentz gas, the stadium and its modifications, and the gas of hard balls. Some open questions and numerical observations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. R. Baldwin, The billiard algorithm and KS entropy,J. Phys. A 24: L941-L947 (1991).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. G. Benettin, Power law behavior of Lyapunov exponents in some conservative dynamical systems,Phys. D 13: 211–220 (1984).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. J.-P. Bouchaud and P. Le Doussal, Numerical study of ad-dimensional periodic Lorentz gas with universal properties,J. Statist. Phys. 41: 225–248 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  4. L. A. Bunimovich, On billiards close to dispersing,Math. USSR Sbornik 23: 45–67 (1974).

    Article  MATH  Google Scholar 

  5. L. A. Bunimovich, On the ergodic properties of nowhere dispersing billiards,Comm. Math. Phys. 65: 295–312 (1979).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. L. A. Bunimovich,On absolutely focusing mirrors, Lect. Notes Math., 1514, Springer, New York, 1990.

    Google Scholar 

  7. S. Chapman and T. G. Cowling,The mathematical theory of nonuniform gases, Cambridge U. Press, 1970.

  8. N. I. Chernov, A new proof of Sinai's formula for entropy of hyperbolic billiards. Its application to Lorentz gas and stadium,Funct. Anal. Appl. 25: 204–219 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  9. N. I. Chernov, and R. Markarian, Entropy of nonuniformly hyperbolic plane billiards,Bol. Soc. Brasil Math. 23: 121–135 (1992).

    MATH  MathSciNet  Google Scholar 

  10. N. I. Chernov and C. Haskell, Nonuniformly hyperbolic K-systems are Bernoulli,Ergodic Theory and Dynamical Systems 16: 19–44 (1996).

    MATH  MathSciNet  Google Scholar 

  11. N. I. Chernov and J. L. Lebowitz, Stationary nonequilibrium states in boundary driven Hamiltonian systems: shear flow,J. Statist. Phys. 86: 953–990 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. V. Donnay, Using intergrability to produce chaos: billiards with positive entropy,Comm. Math. Phys. 141: 225–257 (1991).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. J. J. Erpenbeck and W. W. Wood, Molecular-dynamics calculations of the velocity-autocorrelation function. Methods, hard-disk results,Phys. Rev. A 26: 1648–1675 (1982).

    Article  ADS  Google Scholar 

  14. B. Friedman, Y. Oono, and I. Kubo, Universal behavior of Sinai billiard systems in the small-scatterer limit,Phys. Rev. Lett. 52: 709–712 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  15. G. Gallavotti and D. Ornstein, Billiards and Bernoulli schemes,Comm. Math. Phys. 38: 83–101 (1974).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. D. Gass, Enskog theory for a rigid disk fluid,J. Chem. Phys. 54: 1898–1902 (1971).

    Article  ADS  Google Scholar 

  17. F. Golse, private communication.

  18. A. Katok and J.-M. Strelcyn,Invariant manifolds, entropy and billiards; smooth maps with singularities, Lect. Notes Math., 1222, Springer, New York, 1986.

    MATH  Google Scholar 

  19. A. Katok, The groth rate for the number of singular and periodic orbits for a polygonal billiard,Comm. Math. Phys. 111: 151–160 (1987).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. M. Lach-had, E. Blaisten-Barojas, and T. Sauer, Irregular scattering of particles confined to ring-bounded cavities, manuscript, 1996.

  21. A. Latz, H. van Beijeren, and J. R. Dorfman, Lyapunov spectrum and the conjugate pairing rule for a thermostatted random Lorentz gas: kinetic theory, manuscript, 1996; C. Dellago and H. A. Posch, Lyapunov spectrum and the conjugate pairing rule for a thermostatted random Lorentz gas: numerical simulations, manuscript, 1996.

  22. C. Liverani and M. Wojtkowski, Ergodicity in Hamiltonian systems,Dynamics Reported 4: 130–202 (1995).

    MATH  MathSciNet  Google Scholar 

  23. R. Markarian, Billiards with Pesin region of measure one,Comm. Math. Phys. 118: 87–97 (1988).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. G. Matheron,Random sets and integral geometry, J. Wiley & Sons, New York, 1975.

    MATH  Google Scholar 

  25. Ya. B. Pesin, Characteristic Lyapunov exponents and smooth ergodic theory,Russ. Math. Surv. 32: 55–114 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  26. L. A. Santaló,Integral geometry and geometric probability, Addison-Wesley Publ. Co., Reading, Mass., 1976.

    MATH  Google Scholar 

  27. Ya. G. Sinai, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards,Russ. Math. Surv. 25: 137–189 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  28. Ya. G. Sinai, Entropy per particle for the system of hard spheres, Harvard Univ. Preprint, 1978.

  29. Ya. G. Sinai, Development of Krylov's ideas, Afterwards to N. S. Krylov,Works on the foundations of statistical physics, Princeton Univ. Press, 1979, pp. 239–281.

  30. Ya. G. Sinai and N. I. Chernov, Entropy of a gas of hard spheres with respect to the group of space-time translations,Trudy Seminara Petrovskogo 8: 218–238 (1982) English translation in:Dynamical Systems, Ed. by Ya. Sinai, Adv. Series in Nonlinear Dynamics, Vol. 1.

    MathSciNet  ADS  Google Scholar 

  31. Ya. G. Sinai and N. I. Chernov, Ergodic properties of some systems of 2-dimensional discs and 3-dimensional spheres,Russ. Math. Surv. 42: 181–207 (1987).

    Article  MathSciNet  Google Scholar 

  32. D. Szasz, Boltzmann's ergodic hypothesis, a conjecture for centuries?,Sudia Sci. Math. Hung. 31: 299–322 (1996).

    MATH  MathSciNet  Google Scholar 

  33. F. Vivaldi, G. Casati, and I. Guarneri, Origin of long-time tails in strongly chaotic systems,Phys. Rev. Lett. 51: 727–730 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  34. M. P. Wojtkowski, Invariant families of cones and Lyapunov exponents,Ergod. Th. Dynam. Sys. 5: 145–161 (1985).

    MATH  MathSciNet  Google Scholar 

  35. M. P. Wojtkowski, Principles for the design of billiards with nonvanishing Lyapunov exponents,Commun. Math. Phys. 105: 391–414 (1986).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. M. P. Wojtkowski, Measure theoretic entropy of the system of hard spheres,Ergod. Th. Dynam. Sys. 8: 133–153 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  37. G. M. Zaslavski, Stochasticity in quantum mechanics,Phys. Rep. 80: 147–250 (1981).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernov, N. Entropy, Lyapunov exponents, and mean free path for billiards. J Stat Phys 88, 1–29 (1997). https://doi.org/10.1007/BF02508462

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02508462

Key words

Navigation