Skip to main content
Log in

Using integrability to produce chaos: Billiards with positive entropy

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A new open class of convex 2 dimensional planar billiards with positive Lyapunov exponent almost everywhere is constructed. We introduce the notion of a focusing arc and show that such arcs can be used to build billiard systems with positive Lyapunov exponents. We prove that under smallC 6 perturbations, focusing arcs remain focusing and thereby show that perturbations of the Bunimovich stadium billiard have positive Lyapunov exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [Bi] Birkhoff, G.D.: Surface transformations and their dynamical applications. Acta Math.43, 1–119 (1922). Reprinted in Collected Mathematical Papers, Vol. II. New York: Am. Math. Soc., 111–229 (1950)

    Google Scholar 

  • [B1] Bunimovich, L.A.: On the ergodic properties of nowhere dispersing billiards. Commun. Math. Phys.65, 295–312 (1979)

    Google Scholar 

  • [B2] Bunimovich, L.A.: The stochastic dynamics of rays in resonators. Izv. Vyssh. Uchebn. Zaved. Radiofizika28 (12), 1601–1602 (1985)

    Google Scholar 

  • [B3] Bunimovich, L.A.: Many dimensional nowhere dispersing billiards with chaotic behavior. Physica D33, 58–64 (1988)

    Google Scholar 

  • [B4] Bunimovich, L.A.: A theorem on ergodicity of two-dimensional hyperbolic billiards. Commun. Math. Phys.130, 599–621 (1990)

    Google Scholar 

  • [B5] Bunimovich, L.A.: On absolutely focusing mirrors. Preprint

  • [B-E] Burton, R., Easton, R.W.: Ergodicity of linked twist maps. Lecture Notes in Math., Vol. 819, p. 35–49. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  • [C-F-S] Cornfeld, I.P., Fomin, S.V., Sinai, Ya.G.: Ergodic theory. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  • [D1] Donnay, V.J.: Geodesic flow on the two-sphere. Part I. Positive measure entropy. Ergod. Th. Dynam. Sys.8, 531–553 (1988)

    Google Scholar 

  • [D2] Donnay, V.J.: Geodesic flow on the two-sphere. Part II. Ergodicity. Lecture Notes in Math., Vol. 1342, pp. 112–153. Berlin, Heidelberg, New York: Springer 1988

    Google Scholar 

  • [D3] Donnay, V.J.: A smooth, strictly convex billiard with positive topological entropy (in preparation)

  • [D4] Donnay, V.J.: Billiards with positive entropy. London Mathematical Society Symposium on Dynamical Systems (1988), University of Durham, Abstracts of Lectures

  • [G] Gerber, M.: Personal communication

  • [H] Hopf, E.: Statistik der geodatischen Linien in Mannigfaltigkeiten negativer Krümmung. Leipziger Berichte91, 261–304 (1939)

    Google Scholar 

  • [Hu] Hubacher, A.: Instability of the boundary in the billiard ball problem. Commun. Math. Phys.108, 483–488 (1987)

    Google Scholar 

  • [K-S] Katok, A. and Strelcyn, J.-M., with the collaboration of Ledrappier, F. and Przytycki, F.: Invariant manifolds, entropy and billiards; smooth maps with singularities. Lecture Notes in Math., Vol. 1222. Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  • [Kl] Klingenberg, W.: Riemannian geometry. de Gruyter Studies in Mathematics, 1982

  • [Kr] Krylov, N.S.: Works on the foundations of statistical physics. Princeton, NJ: Princeton University Press 1979

    Google Scholar 

  • [KSS] Kramli, A., Simanyi, N., Szasz, D.: A transversal theorem for semi-dispersing billiards. Commun. Math. Phys.129, 535–560 (1990)

    Google Scholar 

  • [L] Lazutkin, V.F.: On the existence of caustics for the billiard ball problem in a convex domain. Math. USSR Izv.7, 185–215 (1973)

    Google Scholar 

  • [Mn] Manning, A.: Curvature bounds for the entropy of the geodesic flow on a surface. J. London Math. Soc.24, 351–357 (1981)

    Google Scholar 

  • [Mr1] Markarian, R.: Billiards with Pesin region of measure one. Commun. Math. Phys.118, 87–97 (1988)

    Google Scholar 

  • [Mr2] Markarian, R.: Non-uniform hyperbolicity, quadratic forms and billiards. Preprint

  • [Mt1] Mather, J.: Glancing billiards. Ergod. Th. Dynam. Sys.2, 397–403 (1982)

    Google Scholar 

  • [Mt2] Mather, J.: Non-existence of invariant circles. Ergod. Th. Dynam. Sys.4, 301–309 (1984)

    Google Scholar 

  • [M-P] MacKay, R.S., Percival, I.C.: Converse KAM: theory and practice. Commun. Math. Phys.98, 469–512 (1985)

    Google Scholar 

  • [O] Oseledec, V.I.: The multiplicative ergodic theorem. The Lyapunov characteristic numbers of dynamical systems. Trans. Mosc. Math. Soc.19, 197–231 (1968)

    Google Scholar 

  • [P] Pesin, Ya.B.: Lyapunov characteristic exponents and smooth ergodic theory. Russ. Math. Surv.32, 55–114 (1977)

    Google Scholar 

  • [S1] Sinai, Ya.G.: Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Russ. Math. Surv.25, 137–189 (1970)

    Google Scholar 

  • [S2] Sinai, Ya.G.: Introduction to ergodic theory. Princeton, NJ: Princeton University Press 1976

    Google Scholar 

  • [St] Stark, J.: An exhaustive criterion for the non-existence of invariant circles for area preserving twist maps. Commun. Math. Phys.117, 177–189 (1988)

    Google Scholar 

  • [W1] Wojtkowski, M.: Linked twist mappings have theK-property. Annals of the New York Academy of Sciences, Vol. 357, pp. 65–76. Nonlinear Dynamics 1980

    Google Scholar 

  • [W2] Wojtkowski, M.: Invariant families of cones and Lyapunov exponents. Ergod. Th. Dynam. Sys.5, 145–161 (1985)

    Google Scholar 

  • [W3] Wojtkowski, M.: Principles for the design of billiards with nonvanishing Lyapunov exponent. Commun. Math. Phys.105, 319–414 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. N. Mather

Partially supported by NSF grant DMS 8806067

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donnay, V.J. Using integrability to produce chaos: Billiards with positive entropy. Commun.Math. Phys. 141, 225–257 (1991). https://doi.org/10.1007/BF02101504

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101504

Keywords

Navigation