Skip to main content
Log in

A kinetic model of coronary reactive hyperemic response to transient ischemia

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A kinetic model is proposed to delineate the factors that determine the coronary reactive hyperemic response (RHR) to transient ischemia. The model comprises of myocardial-interstitial (M) and vascular (V) compartments. Vasodilator metabolites (VM) are produced in the M compartment during the interval of coronary occlusion. The rate of VM production is dependent on the flow rate during the ischemic period, the ratio of excess flow above the control level (R) to the loss of flow during occlusion period (D), the amount of oxygen stored and the degree of vasodilation in the V compartment prior to occlusion. Following a complete release of occlusion, VM are transported from the M to V compartment and are washed out or degraded with time. The time course of RHR is determined by the coronary patency which is proportional to VM concentration in the V compartment. Based on a set of numerical constants, the model is tested by simulating RHR to the various occlusion manoeuvres: a pair of 10 sec occlusions separated by brief release, a 15 sec release followed by a second brief occlusion, a brief release of an occlusion followed by restriced inflow and a period of restricted inflow after occlusion. The simulated results fit the experimental R/D and RH durations data of canine hearts. Factors that determine the impairment of RH capacity in coronary stenosis are suggested in terms of the model scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Bach, R. J., F. R. Cobb and J. C. Greenfield, Jr. 1974a. Limitation of the coronary vascular response to ischemia in the awake dog.Circ. Res. 35, 527–535.

    Google Scholar 

  • Bache, R. J., F. R. Cobb and J. C. Greenfield, Jr. 1974b. Myocardial blood flow distribution during ischemia-induced coronary vasodilation in the unanesthetized dog.J. Clin. Invest. 54, 1462–1472.

    Article  Google Scholar 

  • Bassenge, E. and G. Heusch. 1990. Endothelial and neuro-humoral control of coronary blood flow in health and disease.Rev. Physiol. Biochem. Pharmacol. 116, 77–165.

    Google Scholar 

  • Bassingthwaighte, J. B., R. B. King and S. A. Roger. 1989. Fractal nature of regional myocardial blood flow heterogeneity.Circ. Res. 65, 578–590.

    Google Scholar 

  • Berne, R. M. 1980. The role of adenosine in the regulation of coronary blood flow.Circ. Res. 47, 807–813.

    Google Scholar 

  • Chen, P. H., A. B. Nichols, M. B. Weiss, R. R. Sciacca, P. D. Walter and P. J. Cannon. 1982. Left ventricular myocardial blood flow in multivessel coronary artery disease.Circulation 66, 537–547.

    Google Scholar 

  • Coffman, J. D. and D. E. Gregg. 1960. Reactive hyperemia characteristic of the myocardium.Am. J. Physiol. 199, 1143–1149.

    Google Scholar 

  • Daut, J., W. Maier-Rudolph, N. van Beckerath, G. Gunther and L. Goedel-Meinen. 1990. Hopoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels.Science 247, 1341–1344.

    Google Scholar 

  • Dole, W. P., W. J. Montville and V. S. Bishop. 1981. Dependency of myocardial reactive hyperemia on coronary artery pressure in the dog.Am. J. Physiol. 240, H709-H715.

    Google Scholar 

  • Fedor, J. M., D. M. McIntosh, J. C. Rember and J. C. Greenfield, Jr. 1978. Coronary and transmural myocardial blood flow responses in awake domestic pigs.Am. J. Physiol. 235, H435-H444.

    Google Scholar 

  • Gould, K. L., R. L. Kirkeeide and M. Buchi. 1990. Coronary flow reserve as physiologic measure of stenosis severity.J. Am. Coll. Cardiol. 15, 459–474.

    Article  Google Scholar 

  • Gould, K. L., K. Lipscomb and G. W. Hamilton. 1974. Physiological basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary reserve.Am. J. Cardiol 33, 87–94.

    Article  Google Scholar 

  • Hillis, W. S. and G. C. Friesinger. 1976. Reactive hyperemia: an index of the significance of coronary stenoses.Am. Heart J. 92, 737–740.

    Google Scholar 

  • Hoffman, J. I. E. and J. A. E. Spaan. 1990. Pressure-flow relation in coronary circulation.Physiol. Rev. 70, 331–390.

    Google Scholar 

  • Marcus, M. L. 1983, Metabolic regulation of coronary blood flow. InThe Coronary Circulation in Health and Disease, M. L. Marcus (Ed.). New York: McGraw-Hill Book Co., pp. 65–92.

    Google Scholar 

  • Marcus, M. L., C. B. Wright, D. B. Doty, C. L. Eastham, D. Laughlin, P. Krumm, C. Fastenow and M. Brody. 1981. Measurements of coronary velocity and reactive hyperemia in the coronary circulation of humans.Circ. Res. 49, 877–891.

    Google Scholar 

  • Olsson, R. A. 1964. Kinetics of myocardial reactive hyperemia blood flow in the unanesthetized dog.Circ. Res. 14 (suppl. I), 81–85.

    Google Scholar 

  • Olsson, R. A. and D. E. Gregg. 1965. Myocardial reactive hyperemia in the unanesthetized dog.Am. J. Physiol. 208, 224–230.

    Google Scholar 

  • Ruiter, J. H., J. A. E. Spaan and J. D. Laird. 1978. Transient oxygen uptake during myocardial reactive hyperemia in the dog.Am. J. Physiol. 235, H87-H94.

    Google Scholar 

  • Sadick, N., G. P. Dube, P. A. McHale and J. C. Greenfield, Jr. 1987. Metabolic mediation of single brief diastole occlusion reactive hyperemic responses.Am. J. Physiol 253, H25-H30.

    Google Scholar 

  • Wennmalm, A., B. Lanne and A.-S. Petersson. 1990. Detection of endothelium-derived relaxing factor in human plasma in the basal state and following ischemia using electron paramagnetic resonance spectrometry.Anal. Biochem. 187, 359–363.

    Article  Google Scholar 

  • Wilson, R. F., M. R. Johnson, M. L. Marcus, P. E. G. Aylward, D. J. Skorton, S. Collins and C. W. White. 1988. The effect of coronary angioplasty on coronary flow reserve.Circulation 77, 873–885.

    Google Scholar 

  • White, C. W., C. B. Wright, D. B. Doty, L. F. Hiratzka, C. L. Eastman, D. G. Harrison and M. L. Marcus. 1984. Does visual interpretation of the coronary angiogram predict the physiological importance of a coronary stenosis?N. Engl. J. Med. 310, 819–824.

    Article  Google Scholar 

  • Wrangler, R. D., K. G. Peters, M. L. Marcus and R. J. Tananek. 1982. Effects of duration and severity of arterial hypertension on cardiac hypertrophy and coronary vasodilator reserve.Circ. Res. 51, 10–18.

    Google Scholar 

  • Wright, C. B., D. B. Doty, C. L. Eastham, D. Langhlin and M. L. Marcus. 1980. A method for assessing the physiologic significance of coronary obstructions in man at cardiac surgery.Circulation 62 (suppl. I), 111–115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, A.Y.K. A kinetic model of coronary reactive hyperemic response to transient ischemia. Bltn Mathcal Biology 57, 137–156 (1995). https://doi.org/10.1007/BF02458320

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02458320

Keywords

Navigation