Skip to main content
Log in

The story of coulombic critiality

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Recent experiments on phase separation and criticality in ionic fluids are reviewed briefly. The data suggest a sharp distinction betweensolvophobic criticality, displayed by nonionic fluids and some electrolytes, that is associated with Ising-like exponents, β≅0.325, γ≅1.239, and ν≅0.631, andCoulombic (orionic)criticality characterized by classical, van der Waals exponents, β=0.5, γ=1, and ν=0.5. Only experiments on the sodium-ammonia system seem to straddle this dichotomy: they show crossover from classical to Ising behavior close toT c at a characteristic crossover scalet x=|Tx−Tc|/Tc. A range of theoretical issues thus raised is discussed, including other conceivable options (spherical model, tricriticality, etc.). Attention is drawn to Nabutovskii's work and various scenarios are illustrated with the aid of schematic phase diagrams containing multicritical points that could, in principle, separate two distinct universality classes of electrolyte criticality. The advantages of examining a basic four-state lattice model that allows for ionic association-dissociation, etec., are reviewed. The issue of the existence, location, and nature of the long-heralded but still elusive gas-liquid transition and critical point in the continuum restricted primitive model (hard spheres carrying charges +q and −q) is taken up in further detail. Earlier theoretical work and recent Monte Carlo simulations are summarized. In an effort to obtain a physically transparent, semiquantitative description, the work of Debye and Hückel and its subsequent elaboration via Bjerrum's concept of bound ion paris is revisited and seen to predict phase separation and criticality. Recent work by Levin and the author is described which repairs serious defects of the earlier theories by including the interaction of the ion-pair dipoles with the screening ionic fluid, following Debye-Hückel methods. The resulting mean field theory agrees quite well with the simulations and appears to embody the most crucial physical effects. However, the role of critical fluctuations, the related interplay of the charge and density correlation functions, the likelihood of Ising-like behavior, and the associated crossover scalet x remain important unsettled questions. An Appendix presents a critique of arguments by Stell to the effect that the restricted primitive model should display Ising behavior and that 1/r 4 effective interactions might be significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Chieux and M. J. Sienko,J. Chem. Phys. 53:566 (1970).

    Article  Google Scholar 

  2. R. R. Singh and K. S. Pitzer,J. Am. Chem., Soc. 110:8723 (1988).

    Google Scholar 

  3. R. R. Singh and K. S. Pitzer,J. Chem. Phys. 92:6775 (1990).

    Article  Google Scholar 

  4. M. L. Japas and J. M. H. Levelt Sengers,J. Phys. Chem. 94:5361 (1990).

    Article  Google Scholar 

  5. K. S. Pitzer,Acc. Chem. Res. 23:333 (1990).

    Article  Google Scholar 

  6. J. M. H. Levelt Sengers and J. A. Given,Mol. Phys. 80:899 (1993).

    Google Scholar 

  7. B. Hafskjold and G. Stell, inThe Liquid State of Matter, E. W. Montroll and J. L. Lebowitz, eds. (North-Holland, Amsterdam, 1982), p. 175, esp. Section 6.4.

    Google Scholar 

  8. J. S. Høye and G. Stell,J. Phys. Chem. 94:7899 (1990).

    Article  Google Scholar 

  9. G. Stell,Phys. Rev. A 45:7628 (1992).

    Article  Google Scholar 

  10. J.-H. Chen, M. E. Fisher, and B. G. Nickel,Phys. Rev. Lett. 48:630 (1982).

    Article  Google Scholar 

  11. P. Chieux, J.-F. Lal, L. Hily, J. Dupuy, F. Leclercq, and P. Damay,J. Phys. (Paris)Ser. IV 1991:C5-3; P. Chieux,J. Phys. (Paris)Ser. IV 1991:C5-373.

  12. C. Caccamo and A. Giacoppo,Phys. Rev. A 42:6285 (1990).

    Article  Google Scholar 

  13. A. Kholodenko and A. L. Beyerlein,J. Chem. Phys. 93:8405 (1990).

    Article  Google Scholar 

  14. A. Kholodenko and A. L. Beyerlein,Phys. Lett. A 132:347 (1988).

    Article  Google Scholar 

  15. M. E. Fisher,J. Chem. Phys. 96:3352 (1992).

    Article  Google Scholar 

  16. H. Weingärtner, S. Wiegand, and W. Schröer,J. Chem. Phys. 96:848 (1992).

    Article  Google Scholar 

  17. K. C. Zhang, M. E. Briggs, R. W. Gammon, and J. M. H. Levelt Sengers,J. Chem. Phys. 97:8692 (1992).

    Article  Google Scholar 

  18. A. Kholodenko and A. L. Beyerlein,Phys. Lett. A 175:366 (1993).

    Article  Google Scholar 

  19. M. E. Fisher, inMagnetism and Magnetic Materials 1974, AIP Conf. Proc. 24 (American Institute for Physics, New York, 1975), p. 273; M. E. Fisher and S. Sarbach,Phys. Rev. Lett. 41:1127 (1978); S. Sarbach and M. E. Fisher,J. Appl. Phys. 49:1350 (1978);50:1802 (1979).

    Google Scholar 

  20. C. J. Thompson,Mathematical Statistical Mechanics (Macmillan, New York, 1972), pp. 94–95, 104–105, Appendix C.

    Google Scholar 

  21. H. Weingärtner, T. Merkel, U. Maurer, J.-P. Conzen, H. Glasbrenner, and S. Käshammer,Ber. Buns. Phys. Chem. 95:1579 (1991).

    Google Scholar 

  22. H. L. Friedman and B. Larsen,J. Chem. Phys. 70:92 (1979).

    Article  Google Scholar 

  23. H. Xu, H. L. Friedman, and F. O. Raineri,J. Solution Chem. 20:739 (1991).

    Article  Google Scholar 

  24. P.-G. de Gennes,Scaling Concepts in Polymer Physics, (Cornell University Press, Ithaca, New York, 1979), Sect. IV 3et seq.

    Google Scholar 

  25. J. P. Valleau,J. Chem. Phys. 95:584 (1991).

    Article  Google Scholar 

  26. A. Z. Panagiotopoulos,Fluid Phase Equilibria 76:97 (1992).

    Article  Google Scholar 

  27. J. F. Douglas, private communication cited in ref. 6. J. M. H. Levelt Sengers and J. A. Given,Mol. Phys. 80:899 (1993).

  28. P. W. Debye and E. Hückel,Physik. Z. 24:185 (1923).

    Google Scholar 

  29. D. A. McQuarrie,Statistical Mechanics (Harper and Row, New York, 1976), Chapter 15.

    Google Scholar 

  30. H. Falkenhagen and W. Ebeling, inIonic Interactions, Vol. 1, S. Petrucci, ed. (Academic Press, New York, 1971), but note slips in Eqs. (49) M. E. Fisher, S.-K. Ma, and B. G. Nickel,Phys. Rev. Lett. 29:917 (1972). and (51) G. Dietler and D. S. Cannell,Phys. Rev. Lett. 60:1852 (1988).

    Google Scholar 

  31. M. E. Fisher and M. M. Telo da Gama, unpublished.

  32. A. Liu and M. E. Fisher,Physica A 156:35 (1989).

    Google Scholar 

  33. K. Binder, inPhase Transitions and Critical Phenomena, Vol. 5b, C. Domb and M. S. Green, eds. (Academic Press, London, 1976).

    Google Scholar 

  34. V. M. Nabutovskii, N. A. Nemov, and Yu. G. Peisakhovich,Sov. Phys. JETP 52:111 (1980) [Zh. Eksp. Teor. Fiz. 79:2196 (1980)];Phys. Lett. 79A:98 (1980);Mol. Phys. 54:979 (1985).

    Google Scholar 

  35. R. M. Hornreich, M. Luban, and S. Shtrikman,Phys. Rev. Lett. 35:1678 (1975).

    Article  Google Scholar 

  36. S. A. Brazovskii,Sov. Phys. JETP 41:85 (1975( [Zh. Eksp. Teor. Fiz. 68:175 (1975)].

    Google Scholar 

  37. M. E. Fisher,J. Appl. Phys. 52:2014 (1981).

    Article  Google Scholar 

  38. M. E. Fisher and W. Selke,Phys. Rev. Lett. 44:1502 (1980).

    Article  Google Scholar 

  39. W. Selke and M. E. Fisher,Physica 15–18:403 (1982);Phys. Rev. B 20:257 (1979).

    Google Scholar 

  40. M. E. Fisher,Phys. Rev. Lett. 34:1634 (1975).

    Article  Google Scholar 

  41. A. A. Migdal,Sov. Phys. JETP 42:743 (1976) [Zh. Eksp. Teor. Fiz. 69:1457 (1975)].

    Google Scholar 

  42. L. P. Kadanoff,Ann. Phys. (N.Y.) 100:359 (1976).

    Article  Google Scholar 

  43. Th. Niemeijer and J. M. J. van Leeuwen, inPhase Transitions and Critical Phenomena, Vol. 6, C. Domb and M. S. Green, eds. (Academic Press, London, 1976), p. 425.

    Google Scholar 

  44. H. E. Stanley, P. J. Reynolds, S. Redner, and F. Family, inReal Space Renormalization Groups, T. W. Burkhardt and J. M. J. van Leeuwen, eds. (Springer-Verlag, Berlin, 1982).

    Google Scholar 

  45. M. Kaufman, R. B. Griffiths, J. M. Yeomans, and M. E. Fisher,Phys. Rev. B 23: 3448 (1981); J. M. Yeomans and M. E. Fisher,Phys. Rev. B 24:2825 (1981).

    Article  Google Scholar 

  46. S. F. Edwards,Phil. Mag. 4:1171 (1959).

    Google Scholar 

  47. J. Glimm and A. Jaffe,Quantum Physics: A Functional Integral Point of View, 2nd ed. (Springer-Verlag, Berlin, 1987), Section 23.6.

    Google Scholar 

  48. D. Brydges,Commun. Math. Phys. 58:313 (1978); D. Brydges and P. Federbush,Commun. Math. Phys. 73:197 (1980).

    Article  Google Scholar 

  49. M. E. Fisher, S.-K. Ma, and B. G. Nickel,Phys. Rev. Lett. 29:917 (1972).

    Article  Google Scholar 

  50. V. Degiorgio, R. Piazza, M. Corti, and C. Minero,J. Chem. Phys. 82:1025 (1985); M. Corti and V. Degiorgio,Phys. Rev. Lett. 55:2005 (1985).

    Article  Google Scholar 

  51. G. Dietler and D. S. Cannell,Phys. Rev. Lett. 60:1852 (1988).

    Article  Google Scholar 

  52. M. E. Fisher,Phys. Rev. Lett. 57:1911 (1986).

    Article  Google Scholar 

  53. C. Bagnuls and C. Bervillier,Phys. Rev. Lett. 58:435 (1987).

    Article  Google Scholar 

  54. M. E. Fisher and M. C. Barbosa,Phys. Rev B 43:11117 (1991); M. C. Barbosa and M. E. Fisher,Phys. Rev. B 43:10635 (1991).

    Google Scholar 

  55. P. T. Cummings and G. Stell,J. Chem. Phys. 78:1917 (1983).

    Article  Google Scholar 

  56. E. R. Smith,J. Stat. Phys. 50:813 (1988).

    Article  Google Scholar 

  57. F. H. Stillinger, Jr., and R. Lovett,J. Chem. Phys. 48:3858 (1968).

    Article  Google Scholar 

  58. D. A. McQuarrie,J. Phys. Chem. 66:1508 (1962).

    Google Scholar 

  59. G. R. Stell, K. C. Wu, and B. Larsen,Phys. Rev. Lett. 37:1369 (1976).

    Article  Google Scholar 

  60. M. E. Fisher and Y. Levin,Phys. Rev. Lett. 71:3826 (1993); Y. Levin and M. E. Fisher, to be published.

    Article  Google Scholar 

  61. P. N. Vorontsov-Veliaminov, A. M. El'yashevich, L. A. Morgenshtern, and V. P. Chasovshikh,Teplofiz. Vys. Temp. 8:277 (1970) [High Temp. (USSR)8:261 (1970)]

    Google Scholar 

  62. V. P. Chasovshikh, P. N. Vorontsov-Veliaminov, and A. M. El'yashevich,Dokl. Akad. Nauk. Tadzhiksko SSR 16(10):23 (1973).

    Google Scholar 

  63. V. P. Chasovskikh and P. N. Vorontsov-Veliaminov,Teplofiz. Vys. Temp. 14:199 (1976) [High Temp. (USSR)14:174 (1976)].

    Google Scholar 

  64. M. J. Gillan,Mol. Phys. 49:421 (1983).

    Google Scholar 

  65. K. S. Pitzer and D. R. Schreiber,Mol. Phys. 60:1067 (1987).

    Google Scholar 

  66. N. Bjerrum,Kgl. Danske Vidensk. Selsk. Mat.-Fys. Medd.,7:1 (1926).

    Google Scholar 

  67. B. Larsen,Chem. Phys. Lett. 27:47 (1974);J. Chem. Phys. 65:3431 (1976).

    Article  Google Scholar 

  68. M. E. Fisher, inCritical Phenomena, Proc. 1970, E. Fermi,Int. Sch. Phys. Varenna, M. S. Green, ed., (Academic Press New York, 1971), p. 1.

    Google Scholar 

  69. V. Privman, ed.,Finite Size Scaling and Numerical Simulation of Statistical Systems (World Scientific, Singapore, 1990); J. L. Cardy, ed.Finite-Size Scaling (North-Holland, Amsterdam, 1988).

    Google Scholar 

  70. V. McGahay and M. Tomozawa,J. NonCryst. Solids 109:27 (1989);J. Chem. Phys. 97:2609 (1992).

    Article  Google Scholar 

  71. J. S. Høye, E. Lomba, and G. Stell,Mol. Phys. 75:1217 (1992).

    Google Scholar 

  72. L. Belloni,J. Chem. Phys. 98:8080 (1993).

    Article  Google Scholar 

  73. M. E. Fisher and S. Fishman,Phys. Rev. Lett. 47:421 (1981), and references therein.

    Article  Google Scholar 

  74. W. Ebeling,Z. Phys. Chem. 238:400 (1968).

    Google Scholar 

  75. W. Ebeling and M. Grigo,Ann. Phys. (Leipzig)37:21 (1980).

    Google Scholar 

  76. H. Yokoyama and H. Yamatera,Bull. Chem. Soc. Japan 48:1770, (1975);Chem. Lett. 1973:337.

    Google Scholar 

  77. M.-C. Justice and J.-C. Justice,J. Solution Chem. 5:543 (1976);6:819 (1977).

    Article  Google Scholar 

  78. R. M. Fuoss,J. Am. Chem. Soc. 80:5058 (1958).

    Google Scholar 

  79. H. L. Friedman,J. Phys. Chem. 66:1595 (1962).

    Google Scholar 

  80. M. E. Fisher, inCritical Phenomena, F. J. W. Hahne, ed. (Springer-Verlag, Berlin, 1983), p. 1.

    Google Scholar 

  81. G. Stell,Phys. Rev. B 1:2265 (1970), Section 4.

    Article  Google Scholar 

  82. G. Stell, private communication.

  83. Xiaojun Li, Y. Levin, and M. E. Fisher, submitted for publication; reported at the 2nd Liquid Matter Conference, Florence, Italy, September 1993.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a lecture delivered at the First Lars Onsager Symposium held at the Norwegian Institute of Technology, Trondheim, Norway, 2–4 June 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisher, M.E. The story of coulombic critiality. J Stat Phys 75, 1–36 (1994). https://doi.org/10.1007/BF02186278

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02186278

Key Words

Navigation