Skip to main content
Log in

Relaxation times in a finite Ising system with random impurities

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Finite-size scaling effects of the Ising model with quenched random impurities are studied, focusing on critical dynamics. In contrast to the pure Ising model, disordered systems are characterized by continuous relaxation time spectra. Dynamic field theory is applied to compute the spectral densities of the magnetizationM(t) and ofM 2(t). In addition, universal cumulant ratios are calculated to second order in ε1/4, where ε=4−d andd<4 denotes the spatial dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. O. Mayer, Critical exponents of the dilute Ising model from four-loop expansions,J. Phys. A 22:2815–2823 (1989).

    Google Scholar 

  2. D. J. W. Geldart and K. De'Bell, Logarithmic corrections for dilute uniaxial ferromagnets at the critical dimension,J. Stat. Phys. 73:409–414 (1993).

    Google Scholar 

  3. H.-O. Heuer, Monte Carlo simulation of strongly disordered Ising ferromagnets,Phys. Rev. B 42:6476–6484 (1990).

    Google Scholar 

  4. H.-O. Heuer, Critical crossover phenomena in disordered Ising systems,J. Phys. A 26:L333-L339 (1993).

    Google Scholar 

  5. H.-O. Heuer, Dynamic scaling of disordered Ising systems,J. Phys. A 26:L341-L346 (1993).

    Google Scholar 

  6. E. Sengespeick, Feldtheorie des kritischen Verhaltens von ungeordneten Ising-Systemen, Diploma thesis, Düsseldorf (1994); E. Sengespeick, H. K. Janssen, and K. Oerding, to be published.

  7. M. E. Fisher, The theory of critical point singularities, inCritical Phenomena, M. S. Green, ed. (Academic Press, New York, 1971), pp. 1–99.

    Google Scholar 

  8. E. Brézin, and J. Zinn-Justin, Finite size effects in phase transitions,Nucl. Phys. B 257 [FS14]:867–893 (1985).

    Google Scholar 

  9. H. W. Diehl, Finite size effects in critical dynamics and the renormalization group.Z. Phys. B 66:211–218 (1987).

    Google Scholar 

  10. Y. Y. Goldschmidt, Finite size scaling effects in dynamics,Nucl. Phys. B 280 [FS18]: 340–354 (1987).

    Google Scholar 

  11. J. C. Niel and J. Zinn-Justin, Finite size effects in critical dynamics,Nucl. Phys. B 280 [FS18]:355–384 (1987).

    Google Scholar 

  12. H. K. Janssen, B. Schaub, and B. Schmittmann, Finite size scaling for directed percolation and related stochastic evolution process,Z. Phys. B 71:377–385 (1988).

    Google Scholar 

  13. H. K. Janssen, B. Schaub, and B. Schmittmann, The general epidemic process in a finite environment.J. Phys. A 21:L427-L434 (1988).

    Google Scholar 

  14. H. K. Janssen, On a Lagrangian for classical field dynamics and renormalization group calculations of dynamical properties,Z. Phys. B 23:377–380 (1976); C. De Dominicis, Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques,J. Phys. (Paris)Coll. C1:247–253 (1976).

    Google Scholar 

  15. C. De Dominicis and L. Peliti, Field-theory renormalization and critical dynamics aboveT c : Helium, antiferromagnets, and liquid-gas systems,Phys. Rev. B 18:353–376 (1978).

    Google Scholar 

  16. H. K. Janssen, On the renormalized field theory of nonlinear critical relaxation, inFrom Phase Transitions to Chaos, Topics in Modern Statistical Physics, G. Györgyi, I. Kondor, L. Sasvári, and T. Tél, eds. (World Scientific, Singapore, 1992), p. 68–91.

    Google Scholar 

  17. A. B. Harris, Effect of random defects on the critical behavior of Ising models,J. Phys. C 7:1671–1692 (1974); A. B. Harris and T. C. Lubensky, Renormalization-group approach to the critical behavior of random-spin models,Phys. Rev. Lett. 33:1540–1543 (1974).

    Google Scholar 

  18. C. De Dominicis, Dynamics as a substitute for replicas in systems with quenched random impurities,Phys. Rev. B 18:4913–4919 (1978).

    Google Scholar 

  19. I. D. Lawrie and V. V. Prudnikov, Static and dynamic properties of systems with extended defects: Two-loop approximation,J. Phys. C 17:1655–1668 (1984).

    Google Scholar 

  20. I. H. Sneddon,The Use of Integral Transforms (McGraw-Hill, New York, 1972).

    Google Scholar 

  21. K. Binder, Finite size scaling analysis of Ising model block distribution functions,Z. Phys. B 43:119–140 (1981).

    Google Scholar 

  22. Y. Y. Goldschmidt, Dynamical relaxation in finite size system.Nucl. Phys. B 285[FS19]:519–534 (1987).

    Google Scholar 

  23. H. Dekker and N. G. van Kampen, Eigenvalues of a diffusion process with a critical point,Phys. Lett. A 73:374–376 (1979).

    Google Scholar 

  24. R. W. Daniels,An Introduction to Numerical Methods and Optimization Techniques (Elsevier North-Holland, New York, 1978).

    Google Scholar 

  25. S. Wolfram,Mathematica (Addison-Wesley, Redwood City, California, 1991).

    Google Scholar 

  26. R. B. Griffiths, Nonanalytic behavior above the critical point in a random Ising ferromagnetPhys. Rev. Lett. 23:17–19 (1969); J. L. Cardy and A. J. McKane, Field theoretic approach to the study of Yang-Lee and Griffiths singularities in the randomly diluted Ising model,Nucl. Phys. B 257[FS14]:383–396 (1985).

    Google Scholar 

  27. H. K. Janssen, B. Schaub, and B. Schmittmann, New universal short-time scaling behavior of critical relaxation processes,Z. Phys. B 73:539–549 (1989).

    Google Scholar 

  28. H. W. Diehl and U. Ritschel, Dynamical relaxation and universal short-time behavior in finite systems,J. Stat. Phys. 73:1–20 (1993).

    Google Scholar 

  29. J. Zinn-Justin, The principles of instanton calculus, inLectures at Les Houches Summer School, J.-B. Zuber and R. Stora, eds. (North-Holland, Amsterdam, 1984), p. 39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oerding, K. Relaxation times in a finite Ising system with random impurities. J Stat Phys 78, 893–916 (1995). https://doi.org/10.1007/BF02183693

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02183693

Key Words

Navigation