Skip to main content
Log in

The obligatory involvement of the electron transport system in the catabolic metabolism ofHaemophilus parainfluenzae

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The catabolic metabolism ofHaemophilus parainfluenzae involves the activity of enzymes of the Embden-Meyerhof-Parnas pathway, the hexose monophosphate pathway, and the tricarboxylic acid cycles. The enzymes of these pathways are very likely localized in the cytoplasm of the bacteria and generate the catabolites which have an obligatory reaction with the membrane-bound electron transport system. The catabolites formed interact to reduce or in some cases to reoxidize six distinct primary membrane-bound dehydrogenases of the electron transport system. The obligatory interaction of the catabolic enzyme systems and the membrane-bound electron transport system involves the generation of DPN as beef heart lactic dehydrogenase can substitute for the membrane-bound electron transport system.

The utilization of glucose, the reoxidation of reduced pyridine nucleotide, and the growth ofH. parainfluenzae all depend on: 1. a functional electron transport system; and 2. suitable externally supplied electron acceptors. Studies with respiratory inhibitors indicate that the primary dehydrogenases, the quinone, the cytochromes and possibly the cytochrome oxidases are involved. An electron acceptor, either DPN, TPN, fumarate, pyruvate, nitrate or oxygen, must be present. Nitrate and oxygen reoxidize the reduced electron transport system by reoxidizing the cytochrome oxidases. There is preliminary evidence that fumarate, possibly TPN, and pyruvate cause pyridine nucleotide reoxidation by oxidizing the proper primary dehydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, H. E. 1958. TheHemophilus group. p. 470–485.In R. J. DuBos, (ed.), Bacterial and mycotic infections of man. 3rd ed. J. B. Lippincott Co., Philadelphia.

    Google Scholar 

  • Barker, S. B. andSummerson, W. H. 1941. The colorimetric determination of lactic acid in biological material. J. Biol. Chem.138 535–554.

    Google Scholar 

  • Bodansky, O. 1954. Serum phosphohexose isomerase in cancer, method of determination and establishment of range of normal values. Cancer7 1191–1199.

    PubMed  Google Scholar 

  • Bücher, T. andPfleiderer, G. 1955. Pyruvate kinase from muscle. p. 435–440.In S. P. Colowick and N. O. Kaplan, (ed.), Methods in enzymology, Vol. I. Academic Press, New York,

    Google Scholar 

  • Cochrane, V. W. 1955. The metabolism of species of streptomyces. VIII. Reactions of the Embden-Meyerhof-Parnas sequence inStreptomyces coelicolor. J. Bacteriol.69 256–263.

    PubMed  Google Scholar 

  • Daron, H. H. andGunsalus, I. C. 1962. Citratase and isocitratase, p. 622–633.In S. P. Colowick and N. O. Kaplan, (ed.), Methods in enzymology, Vol. V. Academic Press, New York.

    Google Scholar 

  • Gingrich, W. andSchlenk, F. 1944. Codehydrogenase I and other pyridinium compounds as V-factor forHemophilus influenzae andH. parainfluenzae. J. Bacteriol47 535–550.

    Google Scholar 

  • Gornall, A. G., Bardawill, C.J. andDavid, M. M. 1949. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem.177 751–766.

    Google Scholar 

  • Henriksen, S. D. 1948. Pleomorphism inHemophilus hemolyticus caused by V-factor deficiency Acta Pathol. Microbiol. Scand.25 431–438.

    Google Scholar 

  • Hill, R. L. andMills, R. C. 1954. The anaerobic glucose metabolism ofBacterium tularense. Arch. Biochem. Biophys.53 174–183.

    Google Scholar 

  • Hu, A. S. L. andCline, A. L. 1964. Regulation of some sugar dehydrogenases in a pseudomonad. Biochim. Biophys. Acta93 237–245.

    PubMed  Google Scholar 

  • Klein, J. R. 1940. The oxidation ofl(−)-aspartic andl(+)-glutamic acids byHemophilus parainfluenzae. Note on the preparation of pyridine nucleotides from baker's yeast by the method of Warburg and Christian. J. Biol. Chem.134 43–57.

    Google Scholar 

  • Kornberg, H. L. andMadsen, N. B. 1958. The metabolism of C2 compounds in micro-organisms. Biochem. J.68 549–557.

    PubMed  Google Scholar 

  • Krebs, H. A. 1950. Manometric determination ofl-aspartic acid andl-asparagine. Biochem. J.47 605–614.

    Google Scholar 

  • Lester, R. L., White, D. C. andSmith, S. L. 1964. The 2-Desmethyl vitamin K2's. A new group of naphthoquinones isolated fromHemophilus parainfluenzae. Biochemistry3 949–954.

    PubMed  Google Scholar 

  • Massey, V. 1955. Fumarase. p. 729–735.In S. P. Colowick and N. O. Kaplan, (ed.), Methods in enzymology, Vol. I. Academic Press, New York.

    Google Scholar 

  • Morrison, J. F. andPeters, R. A. 1954. Biochemistry of fluoroacetate poisoning: the effect of fluorocitrate on purified aconitase. Biochem. J.58 473–479.

    PubMed  Google Scholar 

  • Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem.153 375–380.

    Google Scholar 

  • Ochoa, S. 1955. Malic dehydrogenase from pig heart. p. 735–739.In. S. P. Colowick and N. O. Kaplan, (ed.), Methods in enzymology, Vol. I. Academic Press, New York.

    Google Scholar 

  • Segal, S., Blair, A. E. andWyngaarden, J. B. 1956. An enzymatic spectrophotometric method for the determination of pyruvic acid in blood. J. Lab. and Clin. Med.48 137–143.

    Google Scholar 

  • Sibley, J. A. andLehninger, A. L. 1949. Determination of aldolase in animal tissues. J. Biol. Chem.177 859–872.

    Google Scholar 

  • Somogyi, M. 1945. Determination of blood sugar. J. Biol. Chem.160 69–73.

    Google Scholar 

  • Terner, C., Eggleston, L. V. andKrebs, H. A. 1950. The role of glutamic acid in the transport of potassium in brain and retina. Biochem. J.47 139–149.

    Google Scholar 

  • Velick, S. F. 1955. Glyceraldehyde-3-phosphate dehydrogenase from muscle. p. 401–406.In S. P. Colowick and N. O. Kaplan, (ed.), Methods in enzymology, Vol. I. Academic Press, New York.

    Google Scholar 

  • White, D. C. 1962. Cytochrome and catalase patterns during growth ofHaemophilus parainfluenzae. J. Bacteriol.83 851–859.

    PubMed  Google Scholar 

  • White, D. C. 1963a. Respiratory systems in the hemin-requiringHaemophilus species. J. Bacteriol.85 84–96.

    PubMed  Google Scholar 

  • White, D. C. 1963b. Factors affecting the affinity for oxygen of cytochrome oxidases inHemophilus parainfluenzae. J. Biol. Chem.238 3757–3761.

    PubMed  Google Scholar 

  • White, D. C. 1964. Differential synthesis of five primary electron transport dehydrogenases inHemophilus parainfluenzae. J. Biol. Chem.239 2055–2060.

    PubMed  Google Scholar 

  • White, D. C. 1965a. Synthesis of 2-demethyl vitamin K2 and the cytochrome system inHaemophilus. J. Bacteriol.89 299–305.

    PubMed  Google Scholar 

  • White, D. C. 1965b. The function of 2-demethyl vitamin K2 in the electron transport system ofHemophilus parainfluenzae. J. Biol. Chem.240 1387–1394.

    PubMed  Google Scholar 

  • White, D. C., Bryant, M. P. andCaldwell, D. R. 1962. Cytochrome-linked fermentation inBacteroides ruminicola. J. Bacteriol.84 822–828.

    PubMed  Google Scholar 

  • White, D. C. andSmith, L. 1962. Hematin enzymes ofHemophilus parainfluenzae. J. Biol. Chem.237 1332–1336.

    PubMed  Google Scholar 

  • White, D. C. andSmith, L. 1964. Localization of the enzymes that catalyze hydrogen and electron transport inHemophilus parainfluenzae and the nature of the respiratory chain system. J. Biol. Chem.239 3956–3963.

    PubMed  Google Scholar 

  • Wick, A. M., Drury, D. R., Nakada, H. I. andWolfe, J. B. 1957. Localization of the primary metabolic block produced by 2-deoxyglucose. J. Biol. Chem.224 963–969.

    PubMed  Google Scholar 

  • Wong, D. T. O. andAjl, S. J. 1955. Isocitritase inEscherichia coli. Nature176 970–971.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, D.C. The obligatory involvement of the electron transport system in the catabolic metabolism ofHaemophilus parainfluenzae . Antonie van Leeuwenhoek 32, 139–158 (1966). https://doi.org/10.1007/BF02097454

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02097454

Keywords

Navigation