Skip to main content
Log in

Pharmacokinetics of 2-butanol and its metabolites in the rat

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A pharmacokinetic model is presented to describe the biotransformation of 2-butanol (2-OL) and its metabolites (2-butanone, 3-hydroxy-2-butanone, and 2,3-butanediol) using in vivo experimental blood concentrations. A flow limited model is developed to simulate 2-OL, 2-butanone (2-ONE), 3-hydroxy-2-butanone (3H-2B), and 2,3-butanediol (2,3-BD) blood concentrations in rats after oral administration of 2-OL. Assuming the only important site of 2-OL biotransformation is the liver, the tissues included are the liver and a volume of distribution, essentially body water in the case of 2-OL and its metabolites. A distribution coefficient is found to be necessary to describe the low concentration of 3H-2B in blood after administration of 2-OL. The need for this coefficient may be due to partitioning, binding, or altered transport rates from the liver. Inhibition of 2-ONE metabolism to 3H-2B by 2-OL has been included to explain a time delay in the appearance of 3H-2B after administration of 2-OL. Subsequent experimental verification confirms the mixed function oxidase inhibitory properties of 2-OL. The model is able to simulate blood concentrations and elimination of all four compounds after the oral administration of 2-OL. Additionally, the model also simulates the results obtained after i.v. administration of 3H-2B and 2,3-BD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. O. Recknagel. Carbon tetrachloride hepatotoxicity,Pharmacol, Rev. 19:145–208 (1967).

    CAS  Google Scholar 

  2. H. H. Cornish and J. Adefuin. Ethanol potentiation by halogenated aliphatic solvent toxicity.Am. Indust. Hyg. Assoc. J. 27:57–61 (1966).

    Article  CAS  Google Scholar 

  3. G. J. Traiger and J. V. Bruckner. The participation of 2-butanone in 2-butanol-induced potentiation of carbon tetrachloride hepatotoxicity.J. Pharmacol. Exp. Ther. 196:493–500 (1976).

    CAS  PubMed  Google Scholar 

  4. G. D. DiVincenzo, C. J. Kaplan, and J. Dedinas. Characterization of the metabolites of methyl n-butyl ketone, methyl iso-butyl ketone and methyl ethyl ketone in guinea pig serum and their clearance.Toxicol. Appl. Pharmacol. 36:511–522 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. F. K. Dietz and G. J. Traiger. Potentiation of CCl4 hepatotoxicity in rats by a metabolite of 2-butanone: 2,3-butanediol.Toxicology,14:209–215 (1979).

    Article  CAS  PubMed  Google Scholar 

  6. K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci. 60:1128–1133 (1971).

    Article  CAS  PubMed  Google Scholar 

  7. R. L. Dedrick and K. B. Bischoff. Thiopental pharmacokinetics.J. Pharm. Sci. 57:1346–1351 (1968).

    Article  PubMed  Google Scholar 

  8. K. J. Himmelstein and J. F. Gross. Mathematical model for cyclocytidine pharmacokinetics.J. Pharm. Sci. 66:1441–1444 (1977).

    Article  CAS  PubMed  Google Scholar 

  9. R. L. Dedrick, D. S. Zaharko, and R. J. Lutz. Transport and binding of methotrexatein vivo.J. Pharm. Sci. 62:882–890 (1973).

    Article  CAS  PubMed  Google Scholar 

  10. M. Virolaihen. Intravenous injections in small laboratory rodents.Transplantation 5:1530–1531 (1967).

    Article  Google Scholar 

  11. T. Omura and R. Sato. The carbon monoxide-binding pigment of liver microsomes.J. Biol. Chem. 239:2370–2378 (1964).

    CAS  PubMed  Google Scholar 

  12. M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding.Anal. Biochem. 72:248–254 (1976).

    Article  CAS  PubMed  Google Scholar 

  13. P. Mazel. In B. N. LaDu, H. G. Mandel and E. L. Way (eds.),Fundamentals of Drug Metabolism and Drug Disposition, Williams & Williams, Baltimore, 1971, p. 549.

    Google Scholar 

  14. R. G. D. Steel and J. H. Torrie. InPrinciples and Procedures in Statistics, McGraw Hill, New York, 1960, p. 57.

    Google Scholar 

  15. A. Ralston and H. S. Wilf.Mathematical Models for Digital Computers, John Wiley & Sons, New York, 1960, pp. 95–109.

    Google Scholar 

  16. A. Ralston. Runge-Kutta methods with minimum error bounds.Math. Comp. 16:431–437 (1962).

    Article  Google Scholar 

  17. J. Dawson and R. P. Hullin. Metabolism of acetoin. The formation and utilization of acetoin and butane-2,3-diol in the decerebrated cat.Biochem. J. 57:177–185 (1954).

    CAS  PubMed Central  PubMed  Google Scholar 

  18. M. A. Gabriel, H. Jabara, and U. A. S. Al-Khalidi. Metabolism of acetoin in mammalian liver slices and extracts. Interconversion with butane-2,3-diol and biacetyl.Biochem. J. 124:793–800 (1971).

    CAS  PubMed Central  PubMed  Google Scholar 

  19. I. A. Kamil, J. N. Smith, and R. T. Williams. The metabolism of aliphatic alcohols. The glucuronic acid conjugation of acyclic aliphatic alcohols.Biochem. J. 53:129–136 (1953).

    CAS  PubMed Central  PubMed  Google Scholar 

  20. L. Schwartz. Uber die oxydation des acetone and homologer ketone der fettsaurereihe.Arch. Exp. Pathol. Pharmakol. 40:168–194 (1898).

    Article  Google Scholar 

  21. R. T. Williams. InDetoxification Mechanisms, 2nd ed., Chapman and Hall, London, 1959, pp. 95–97.

    Google Scholar 

  22. A. D. Merritt and G. M. Tomkins. Reversible oxidation of cyclic secondary alcohols by liver alcohol dehydrogenase.J. Biol. Chem. 234:2778–2782 (1959).

    CAS  Google Scholar 

  23. S. Kramer, H. Staudinger, and V. Ullrich. Effect of then-hexane inhalation on the monooxygenose system in mice liver microsomes.Chem. Biol. Interact. 8:11–18 (1974).

    Article  CAS  PubMed  Google Scholar 

  24. E. Mezey, Ethanol metabolism and ethanol-drug interactions.Biochem. Pharmacol. 25:869–875 (1976).

    Article  CAS  PubMed  Google Scholar 

  25. P. K. Gessner, D. V. Parke, and R. T. Williams. Studies in detoxication, the metabolism of glycols.Biochemistry 74:1–5 (1960).

    CAS  Google Scholar 

  26. W. Westfeld and R. Berg. Observations on the metabolism of acetoin.J. Biol. Chem. 148:523–528 (1943).

    Google Scholar 

  27. L. I. Harrison and M. Gibaldi. Physiologically based pharmacokinetic model for digoxin distribution and elimination in the rat.J. Pharm. Sci. 66:1138–1142 (1977).

    Article  CAS  PubMed  Google Scholar 

  28. F. K. Dietz, G. J. Traiger, and V. Stella. The role of 2-butanone metabolism in the potentiation of CCl4-induced hepatotoxicity.Toxicol. Appl. Pharmacol. 48:A155 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietz, F.K., Rodriguez-Giaxola, M., Traiger, G.J. et al. Pharmacokinetics of 2-butanol and its metabolites in the rat. Journal of Pharmacokinetics and Biopharmaceutics 9, 553–576 (1981). https://doi.org/10.1007/BF01061026

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061026

Key words

Navigation