Skip to main content
Log in

Review of new experimental techniques for investigating random sequential adsorption

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Burgeoning interest in random sequential adsorption (RSA) processes has led to a surge of theoretical results, but experimental work is lagging behind, due to a dearth of suitable techniques. This article reviews integrated-optical techniques for investigating the kinetics of RSA and related processes. The basic idea is to measure the phase shifts of guided waves, due to the adsorption of particles at the surface of a planar waveguide. The technique is very well suited to investigating 2-dimensional RSA, and can yield high-quality kinetic adsorption data, precise enough for rigorously testing theoretical predictions. The current state of the art allow adsorbed mass to be measured quasicontinuously with a precision of at least 1 ng/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rényi,A Magyar Tudományos Akadémia Matematikai Kutató Intézetének Közleményei 3:109 (1958).

    Google Scholar 

  2. M. C. Bartelt and V. Privman,Int. J. Mod. Phys. 5:2883 (1991).

    Google Scholar 

  3. B. Senger, J.-C. Voegel, P. Schaaf, A. Johner, A. Schmitt, and J. Talbot,Phys. Rev. A 44:6926 (1991).

    Google Scholar 

  4. J. Bafaluy, B. Senger, J.-C. Voegel, and P. Schaaf,Phys. Rev. Lett. 70:623 (1993).

    Google Scholar 

  5. M. von Smoluchowski,Phys. Z. 17:557 (1916).

    Google Scholar 

  6. G. Y. Onoda and E. G. Liniger,Phys. Rev. A 33:715 (1986).

    Google Scholar 

  7. M. H. Kao, A. G. Yodh, and D. J. Pine,Phys. Rev. Lett. 70:242 (1993).

    Google Scholar 

  8. J. Lohne,Centaurus 6:113 (1959).

    Google Scholar 

  9. I. Newton,Philosophiae naturalis principia mathematica, Lib. 1, Sect. XIV, Prop. XCVI, Theor. L (Royal Society, London, 1687).

    Google Scholar 

  10. I. Newton,Opticks, 4th ed., Book 3, Qu. 29 (William Innys, London, 1730).

    Google Scholar 

  11. F. Goos and H. HÄnchen,Ann. Phys. (6) (N.Y.)1:333 (1947).

    Google Scholar 

  12. M. J. Adams,An Introduction to Optical Waveguides (Wiley, Chichester, England, 1981).

    Google Scholar 

  13. A. Ghatak and K. Thyagarajan,Optical Electronics (Cambridge University Press, 1989).

  14. F. A. Jenkins and H. E. White,Fundamentals of Optics, 2nd ed. (McGraw-Hill, New York, 1950).

    Google Scholar 

  15. P. K. Tien,Rev. Mod. Phys. 49:361 (1977).

    Google Scholar 

  16. K. Artmann,Ann. Phys. 2:87 (1948).

    Google Scholar 

  17. H. K. V. Lotsch,J. Opt. Soc. Am. 58:551 (1968).

    Google Scholar 

  18. K. Tiefenthaler and W. Lukosz,J. Opt. Soc. Am. B 6:209 (1989).

    Google Scholar 

  19. A. A. Spikhalskii,Opt. Quantum Electronics 18:103 (1986).

    Google Scholar 

  20. Lord Rayleigh,Proc. R. Soc. Lond. A 79:399 (1907).

    Google Scholar 

  21. O. Parriaux, Guided wave electromagnetism and opto-chemical sensors, inFiber Optic Chemical Sensors and Biosensors, Vol. I, O. S. Wolfbeis, ed. (CRC Press, Boca Raton, Florida, 1991).

    Google Scholar 

  22. W. Lukosz and Ch. Stamm,Sensors Actuators A 25–27:185 (1991).

    Google Scholar 

  23. W. Lukosz, Ph. M. Nellen, Ch. Stamm, and P. Weiss,Sensors Actuators B 1:585 (1990).

    Google Scholar 

  24. J. J. Ramsden,Sensors Actuators B 15–16:439 (1993).

    Google Scholar 

  25. J. A. de Feijter, J. Benjamins, and F. A. Veer,Biopolymers 17:1759 (1978).

    Google Scholar 

  26. W. Nebe,Analytische Interferometrie (Geest & Portig, Leipzig, 1970).

    Google Scholar 

  27. W. Lukosz and K. Tiefenthaler,Sensors Actuators 15:273 (1988).

    Google Scholar 

  28. K. B. Blodgett and I. Langmuir,Phys. Rev. 51:964 (1937).

    Google Scholar 

  29. C. W. Pitt and L. M. Walpita,Thin Solid Films 68:101 (1980).

    Google Scholar 

  30. P. P. Herrmann and D. Wildmann,IEEE J. Quantum Electronics QE-19:1735 (1983).

    Google Scholar 

  31. W. Lukosz and K. Tiefenthaler,Opt. Lett. 8:537 (1983).

    Google Scholar 

  32. T. W. Healy and L. R. White,Adv. Colloid Interface Sci. 9:303 (1978).

    Google Scholar 

  33. D. E. Yates and T. W. Healy,Trans. Faraday Soc. 76:9 (1980).

    Google Scholar 

  34. R. J. Hunter,Zeta Potential in Colloid Science (Academic Press, London, 1981).

    Google Scholar 

  35. J. J. Ramsden, D. U. Roemer, and J. E. Prenosil, inProceedings 6th European Conference on Integrated Optics, Neuchâtel (1993).

  36. J. J. Ramsden and P. Schneider,Biochemistry 32:523 (1993).

    Google Scholar 

  37. S. Z. Roginskii,Adsorptsiya i Kataliz na Neodnorodnykh Poverkhnostakh (Izd. AN SSSR, Moscow, 1948).

    Google Scholar 

  38. E. A. Kulik, I. D. Kalinin, and B. I. Sevastyanov,Zh. Fiz. Khim. 65:2230 (1991).

    Google Scholar 

  39. J. D. Aptel, J. C. Vogel, and A. Schmitt,Colloids Surfaces 29:359 (1988).

    Google Scholar 

  40. G. Leaver, J. A. Howell, and J. R. Conder,J. Chromatography 590:101 (1992).

    Google Scholar 

  41. J. J. Ramsden,Phys. Rev. Lett. 71:295 (1993).

    Google Scholar 

  42. V. I. Levich,Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, New Jersey, 1962).

    Google Scholar 

  43. J. Crank,The Mathematics of Diffusion, 2nd ed. (Clarendon Press, Oxford, 1975).

    Google Scholar 

  44. J. J. Ramsden,J. Phys. Chem. 96:3388 (1992).

    Google Scholar 

  45. P.-G. de Gennes,C. R. Acad. Sci. Paris (II) 295:1061 (1982).

    Google Scholar 

  46. T. Pajkossy,Phys. Rev. B 42:709 (1990).

    Google Scholar 

  47. E. Rabinowitch and W. C. Wood,Trans. Faraday Soc. 32:1381 (1936).

    Google Scholar 

  48. E. Rabinowitch,Trans. Faraday Soc. 33:1225 (1937).

    Google Scholar 

  49. M. Sun and C. Ebner,Phys. Rev. Lett. 69:3491 (1992).

    Google Scholar 

  50. V. I. Levich,Disc. Faraday Soc. 1:37 (1947).

    Google Scholar 

  51. J. D. Andrade and V. Hlady,Adv. Polymer Sci. 79:1 (1986).

    Google Scholar 

  52. E. A. Kulik, I. D. Kalinin, and B. I. Sevastyanov,Zh. Fiz. Khim. 65:2234 (1991).

    Google Scholar 

  53. P. Schaaf and J. Talbot,Phys. Rev. Lett. 62:175 (1989).

    Google Scholar 

  54. P. Schaaf and J. Talbot,J. Chem. Phys. 91:4401 (1989).

    Google Scholar 

  55. R. Kurrat, J. J. Ramsden, and J. E. Prenosil,Trans. Faraday Soc., to appear.

  56. L. C. Allen,Proc. Natl Acad. Sci. USA 72:4701 (1975).

    Google Scholar 

  57. A. B. Meggy,J. Soc. Dyers Colorists 66:510 (1950).

    Google Scholar 

  58. N. Muller,Acc. Chem. Res. 23:23 (1990).

    Google Scholar 

  59. C. J. van Oss, inProtein Interactions, H. Visser, ed. (VCH, Weinheim, 1992).

    Google Scholar 

  60. J. J. Ramsden and J. E. Prenosil,J. Phys. Chem., to appear.

  61. J. Engel,Biochemistry 31:10643 (1992).

    Google Scholar 

  62. J. J. Ramsden,Biopolymers 33:475 (1993).

    Google Scholar 

  63. G. Oster, inPhysical Techniques in Biological Research, G. Oster and A. W. Pollister, eds. (Academic Press, New York, 1955), Vol. 1, Chapter 8.

    Google Scholar 

  64. P. Schaaf and Ph. Dejardin,Colloids Surfaces 31:89 (1988).

    Google Scholar 

  65. J. C. Charmet and P. G. de Gennes,J. Opt. Soc. Am. 73:1777 (1983).

    Google Scholar 

  66. J. J. Ramsden,Q. Rev. Biophys., to appear.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramsden, J.J. Review of new experimental techniques for investigating random sequential adsorption. J Stat Phys 73, 853–877 (1993). https://doi.org/10.1007/BF01052813

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01052813

Key words

Navigation