Skip to main content

Advertisement

Log in

Transient grating spectroscopy: An ultrarapid, nondestructive materials evaluation technique

  • Acoustic Processes in Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Structure–property relationships are the foundation of materials science and are essential for predicting material response to driving forces, managing in-service material degradation, and engineering materials for optimal performance. Elastic, thermal, and acoustic properties provide a convenient gateway to directly or indirectly probe materials structure across multiple length scales. This article will review how using the laser-induced transient grating spectroscopy (TGS) technique, which uses a transient diffraction grating to generate surface acoustic waves and temperature gratings on a material surface, nondestructively reveals the material’s elasticity, thermal diffusivity, and energy dissipation on the sub-microsecond time scale, within a tunable subsurface depth. This technique has already been applied to many challenging problems in materials characterization, from analysis of radiation damage, to colloidal crystals, to phonon-mediated thermal transport in nanostructured systems, to crystal orientation and lattice parameter determination. Examples of these applications, as well as inferring aspects of microstructural evolution, illustrate the wide potential reach of TGS to solve old materials challenges and to uncover new science. We conclude by looking ahead at the tremendous potential of TGS for materials discovery and optimization when applied in situ to dynamically evolving systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Tanenbaum, A.D. Mills, J. Electrochem. Soc. 108, 171 (1961).

    Google Scholar 

  2. J.J. Jonas, C.M. Sellars, W.J.M. Tegart, Metall. Rev. 14, 1 (1969).

    Google Scholar 

  3. T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem. Soc. 116, 3801 (1994).

    Google Scholar 

  4. A.M. Harris, E.C. Lee, J. Appl. Polym. Sci. 107, 2246 (2008).

    Google Scholar 

  5. Y.J. Li, A. Savan, A. Kostka, H.S. Stein, A. Ludwig, Mater. Horiz. 5, 86 (2018).

    Google Scholar 

  6. S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, O. Levy, Nat. Mater. 12, 191 (2013).

    Google Scholar 

  7. P. Hosemann, Scr. Mater. 143, 161 (2018).

    Google Scholar 

  8. H. Bei, S. Shim, E.P. George, M.K. Miller, E.G. Herbert, G.M. Pharr, Scr. Mater. 57, 397 (2007).

    Google Scholar 

  9. N. De Jonge, F.M. Ross, Nat. Nanotechnol. 6, 695 (2011).

    Google Scholar 

  10. F. Hofmann, E. Tarleton, R.J. Harder, N.W. Phillips, P.-W.W. Ma, J.N. Clark, I.K. Robinson, B. Abbey, W. Liu, C.E. Beck, Sci. Rep. 7, 45993 (2017).

    Google Scholar 

  11. C. Donnelly, M. Guizar-Sicairos, V. Scagnoli, S. Gliga, M. Holler, J. Raabe, L.J. Heyderman, Nature 547, 328 (2017).

    Google Scholar 

  12. A. Ulvestad, A. Singer, J.N. Clark, H.M. Cho, J.W. Kim, R. Harder, J. Maser, Y.S. Meng, O.G. Shpyrko, Science 348, 1344 (2015).

    Google Scholar 

  13. R.N. Wright, T.-L. Sham, “Status of Metallic Structural Materials for Molten Salt Reactors” (2018), doi:INL/EXT-18–45171.

  14. W.R. Corwin, G.E. Lucas, in ASTM Symposium on the Use of Nonstandard Subsized Specimens for Irradiated Testing (ASTM, Philadelphia, PA, 1986), p. 379, https://inis.iaea.org/search/search.aspx?orig_q=RN:18065732.

    Google Scholar 

  15. B. Tanguy, J. Besson, R. Piques, A. Pineau, Eng. Fract. Mech. 72, 49 (2005).

    Google Scholar 

  16. W.L. Server, R.K. Nanstad, G.R. Odette, “Use of Reactor Pressure Vessel Surveillance Materials for Extended Life Evaluations Using Power and Test Reactor Irradiations” (2012), https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/070/43070853.pdf.

  17. K. Onizawa, K. Fukaya, Y. Nishiyama, M. Suzuki, S. Kaihara, T. Nakamura, Int. J. Press. Vessels Pip. 70, 201 (1997).

    Google Scholar 

  18. E. Getto, K. Sun, A.M. Monterrosa, Z. Jiao, M.J. Hackett, G.S. Was, J. Nucl. Mater. 480, 159 (2016).

    Google Scholar 

  19. F.A. Garner, M.B. Toloczko, J. Nucl. Mater. 251, 252 (1997).

    Google Scholar 

  20. Y. Wang, B. Yousefzadeh, H. Chen, H. Nassar, G. Huang, C. Daraio, Phys. Rev. Lett. 121, 194301 (2018).

    Google Scholar 

  21. J. Cha, C. Daraio, Nat. Nanotechnol. 13, 1016 (2018).

    Google Scholar 

  22. J.C. Dyre, Rev. Mod. Phys. 78, 953 (2006).

    Google Scholar 

  23. H. Tanaka, T. Kawasaki, H. Shintani, K. Watanabe, Nat. Mater. 9, 324 (2010).

    Google Scholar 

  24. N. Boechler, G. Theocharis, C. Daraio, Nat. Mater. 10, 665 (2011).

    Google Scholar 

  25. V.F. Nesterenko, Dynamics of Heterogeneous Materials (Springer, New York, 2001).

    Google Scholar 

  26. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 2, 466 (2009).

    Google Scholar 

  27. M.R. Ryder, B. Civalleri, J.C. Tan, Phys. Chem. Chem. Phys. 18, 9079 (2016).

    Google Scholar 

  28. J.C. Tan, B. Civalleri, C.C. Lin, L. Valenzano, R. Galvelis, P. F. Chen, T.D. Bennett, C. Mellot-Draznieks, C.M. Zicovich-Wilson, A.K. Cheetham, Phys. Rev. Lett. 108, 095502 (2012).

    Google Scholar 

  29. M.R. Ryder, B. Civalleri, G. Cinque, J.C. Tan, CrystEngComm 18, 4303 (2016).

    Google Scholar 

  30. A.A. Maznev, A. Mazurenko, L. Zhuoyun, M. Gostein, Rev. Sci. Instrum. 74, 667 (2003).

    Google Scholar 

  31. A.A. Maznev, K.A. Nelson, J.A. Rogers, Opt. Lett. 23, 1319 (1998).

    Google Scholar 

  32. J.A. Johnson, A.A. Maznev, M.T. Bulsara, E.A. Fitzgerald, T.C. Harman, S. Calawa, C.J. Vinels, G. Turner, K.A. Nelson, J. Appl. Phys. 111, 023503 (2012).

    Google Scholar 

  33. K.A. Nelson, R. Casalegno, R.J.D. Miller, M.D. Fayer, J. Chem. Phys. 77, 1144 (1982).

    Google Scholar 

  34. C.A. Dennett, M.P. Short, Appl. Phys. Lett. 110, 211106 (2017).

    Google Scholar 

  35. F. Hofmann, D.R. Mason, J.K. Eliason, A.A. Maznev, K.A. Nelson, S.L. Dudarev, Sci. Rep. 5, 16042 (2015).

    Google Scholar 

  36. G.M. Peter, Nanotechnology 16, 995 (2005).

    Google Scholar 

  37. A.G. Every, K.Y. Kim, A.A. Maznev, J. Acoust. Soc. Am. 102, 1346 (1997).

    Google Scholar 

  38. N. Favretto-Cristini, D. Komatitsch, J.M. Carcione, F. Cavallini, Ultrasonics 51, 653 (2011).

    Google Scholar 

  39. X. Du, J.C. Zhao, npj Comput. Mater. 3 (2017), doi:10.1038/s41524–017–0019-x.

  40. A.G. Every, A.A. Maznev, W. Grill, M. Pluta, J.D. Comins, O.B. Wright, O. Matsuda, W. Sachse, J.P. Wolfe, Wave Motion 50, 1197 (2013).

    Google Scholar 

  41. J.M. Brown, Ultrasonics 90, 23 (2018).

    Google Scholar 

  42. O.W. Käding, H. Skurk, A.A. Maznev, E. Matthias, Appl. Phys. A 61, 253 (1995).

    Google Scholar 

  43. C.A. Dennett, M.P. Short, J. Appl. Phys. 123, 215109 (2018).

    Google Scholar 

  44. D. Royer, E. Dieulesaint, J. Acoust. Soc. Am. 76, 1438 (1984).

    Google Scholar 

  45. J. Goossens, P. Leclaire, X. Xu, C. Glorieux, L. Martinez, A. Sola, C. Siligardi, V. Cannillo, T. Van der Donck, J.-P. Celis, J. Appl. Phys. 102, 053508 (2007).

    Google Scholar 

  46. J.A. Rogers, M. Fuchs, M.J. Banet, J.B. Hanselman, R. Logan, K.A. Nelson, Appl. Phys. Lett. 71, 225 (1997).

    Google Scholar 

  47. A. Vega-Flick, J.K. Eliason, A.A. Maznev, A. Khanolkar, M. Abi Ghanem, N. Boechler, J.J. Alvarado-Gil, K.A. Nelson, Rev. Sci. Instrum. 86 (2015), doi:10.1063/1.4936767.

  48. C.A. Dennett, P. Cao, S.E. Ferry, A. Vega-Flick, A.A. Maznev, K.A. Nelson, A.G. Every, M.P. Short, Phys. Rev. B 94, 214106 (2016).

    Google Scholar 

  49. G.J. Dienes, Phys. Rev. 86, 228 (1952).

    Google Scholar 

  50. R.G. Folweiler, F.R. Brotzen, Acta Metall. 7, 716 (1959).

    Google Scholar 

  51. H. Dieckamp, A. Sosin, J. Appl. Phys. 27, 1416 (1956).

    Google Scholar 

  52. X. Du, J.C. Zhao, Scr. Mater. 152, 24 (2018).

    Google Scholar 

  53. D. Gasteau, N. Chigarev, L. Ducousso-Ganjehi, V.E. Gusev, F. Jenson, P. Calmon, V. Tournat, J. Appl. Phys. 119, 43103 (2016).

    Google Scholar 

  54. Y. Xu, T. Aizawa, J. Kihara, Mater. Trans. JIM 38, 536 (1997).

    Google Scholar 

  55. D.Y. Li, J.A. Szpunar, Acta Metall. Mater. 40, 3277 (1992).

    Google Scholar 

  56. F. Hofmann, D. Nguyen-Manh, M.R. Gilbert, C.E. Beck, J.K. Eliason, A.A. Maznev, W. Liu, D.E.J. Armstrong, K.A. Nelson, S.L. Dudarev, Acta Mater. 89, 352 (2015).

    Google Scholar 

  57. M. Rieth, S.L. Dudarev, S.M. Gonzalez de Vicente, J. Aktaa, T. Ahlgren, S. Antusch, D.E.J. Armstrong, M. Balden, N. Baluc, M.-F. Barthe, W.W. Basuki, M. Battabyal, C.S. Becquart. D. Blagoeva, H. Boldyryeva, J. Brinkmann, M. Celino, L. Ciupinski, J.B. Correia, A. De Backer, C. Domain, E. Gaganidze, C. García-Rosales, J. Gibson, M.R. Gilbert, S. Giusepponi, B. Gludovatz, H. Greuner, K. Heinola, T. Höschen, A. Hoffmann, N. Holstein, F. Koch, W. Krauss, H. Li, S. Lindig, J. Linke, Ch. Linsmeier, P. López-Ruiz, H. Maier, J. Matejicek, T.P. Mishra, M. Muhammed, A. Muñoz, M. Muzyk, K. Nordlund, D. Nguyen-Manh, J. Opschoor, N. Ordás, T. Palacios, G. Pintsuk, R. Pippan, J. Reiser, J. Riesch, S.G. Roberts, L. Romaner, M. Rosiński, M. Sanchez, W. Schulmeyer, H. Traxler, A. Ureña, J.G. van der Laan, L. Veleva, S. Wahlberg, M. Walter, T. Weber, T. Weitkamp, S. Wurster, M.A. Yar, J.H. You, A. Zivelonghi, J. Nucl. Mater. 432, 482 (2013).

    Google Scholar 

  58. Z. Zhou, S.L. Dudarev, M.L. Jenkins, A.P. Sutton, M.A. Kirk, J. Nucl. Mater. 367, P, 305 (2007).

    Google Scholar 

  59. D.E.J. Armstrong, P.D. Edmondson, S.G. Roberts, Appl. Phys. Lett. 102, 1 (2013).

    Google Scholar 

  60. R.A. Duncan, F. Hofmann, A. Vega-Flick, J.K. Eliason, A.A. Maznev, A.G. Every, K.A. Nelson, Appl. Phys. Lett. 109, 151906 (2016).

    Google Scholar 

  61. C.A. Dennett, K.P. So, A. Kushima, D.L. Buller, K. Hattar, M.P. Short, Acta Mater. 145, 496 (2018).

    Google Scholar 

  62. C.A. Dennett, D.L. Buller, K. Hattar, M.P. Short, Nucl. Instrum. Methods Phys. Res. B 440, 126 (2019).

    Google Scholar 

  63. J. Friedel, London, Edinburgh Dublin Philos. Mag. J. Sci. 44, 444 (1953).

    Google Scholar 

  64. D. Parkin, J. Goldstone, H. Simpson, J. Hemsky, J. Phys. F Met. Phys. 17, 577 (1987).

    Google Scholar 

  65. N. Li, K. Hattar, A. Misra, J. Nucl. Mater. 439, 185 (2013).

    Google Scholar 

  66. N. Boechler, J.K. Eliason, A. Kumar, A.A. Maznev, K.A. Nelson, N. Fang, Phys. Rev. Lett. 111, 036103 (2013).

    Google Scholar 

  67. P.H. Otsuka, S. Mezil, O. Matsuda, M. Tomoda, A.A. Maznev, T. Gan, N. Fang, N. Boechler, V.E. Gusev, O.B. Wright, New J. Phys. 20, 013026 (2018).

    Google Scholar 

  68. M. Hiraiwa, M. Abi Ghanem, S.P. Wallen, A. Khanolkar, A.A. Maznev, N. Boechler, Phys. Rev. Lett. 116, 198001 (2016).

    Google Scholar 

  69. J.K. Eliason, A. Vega-Flick, M. Hiraiwa, A. Khanolkar, T. Gan, N. Boechler, N. Fang, K.A. Nelson, A.A. Maznev, Appl. Phys. Lett. 108, 061907 (2016).

    Google Scholar 

  70. P. Norajitra, R. Giniyatulin, T. Hirai, W. Krauss, V. Kuznetsov, I. Mazul, I. Ovchinnikov, J. Reiser, G. Ritz, H.J. Ritzhaupt-Kleissl, V. Widak, Fusion Eng. Des. 84, 1429 (2009).

    Google Scholar 

  71. P. Norajitra, S. Antusch, R. Giniyatulin, V. Kuznetsov, I. Mazul, H.J. Ritzhaupt-Kleissl, L. Spatafora, Fusion Eng. Des. 86, 1656 (2011).

    Google Scholar 

  72. J.M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford University Press, Oxford, UK, 2001).

    Google Scholar 

  73. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, J. Appl. Phys. 93, 793 (2003).

    Google Scholar 

  74. D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, L. Shi, Appl. Phys. Rev. 1, 011305 (2014).

    Google Scholar 

  75. P.M. Derlet, D. Nguyen-Manh, S.L. Dudarev, Phys. Rev. B 76, 54107 (2007).

    Google Scholar 

  76. K. Nordlund, S.J. Zinkle, A.E. Sand, F. Granberg, R.S. Averback, R.E. Stoller, T. Suzudo, L. Malerba, F. Banhart, W.J. Weber, F. Willaime, S.L. Dudarev, D. Simeone, J. Nucl. Mater. 512, 450 (2018).

    Google Scholar 

  77. A.E. Sand, J. Byggmästar, A. Zitting, K. Nordlund, J. Nucl. Mater. 511, 64 (2018).

    Google Scholar 

  78. S.E. Ferry, “Breaking the Bottleneck in Radiation Materials Science with Transient Grating Spectroscopy,” PhD thesis, Massachusetts Institute of Technology (2018).

  79. B.A. Loomis, S.B. Gerber, Acta Metall. 21, 165 (1973).

    Google Scholar 

  80. M. Fujitsuka, B. Tsuchiya, I. Mutoh, T. Tanabe, T. Shikama, J. Nucl. Mater. 283, (Pt.2), 1148 (2000).

    Google Scholar 

  81. M. Roedig, W. Kuehnlein, J. Linke, D. Pitzer, M. Merola, E. Rigal, B. Schedler, E. Visca, J. Nucl. Mater. 329, 766 (2004).

    Google Scholar 

  82. A.T. Peacock, V. Barabash, W. Dänner, M. Rödig, P. Lorenzetto, P. Marmy, M. Merola, B.N. Singh, S. Tähtinen, J. van der Laan, C.H. Wu, J. Nucl. Mater. 329, 173 (2004).

    Google Scholar 

  83. J.S. Blakemore, Solid State Physics, 2nd ed. (Cambridge University Press, Cambridge, UK, 1985).

    Google Scholar 

  84. J.A. Johnson, A.A. Maznev, J. Cuffe, J.K. Eliason, A.J. Minnich, T. Kehoe, C.M.S. Torres, G. Chen, K.A. Nelson, Phys. Rev. Lett. 110, 25901 (2013).

    Google Scholar 

  85. S. Huberman, V. Chiloyan, R.A. Duncan, L. Zeng, R. Jia, A.A. Maznev, E.A. Fitzgerald, K.A. Nelson, G. Chen, Phys. Rev. Mater. 1, 054601 (2017).

    Google Scholar 

  86. J.A. Johnson, J.K. Eliason, A.A. Maznev, T. Luo, K.A. Nelson, J. Appl. Phys. 118 (2015), doi:10.1063/1.4933285.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Hofmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, F., Short, M.P. & Dennett, C.A. Transient grating spectroscopy: An ultrarapid, nondestructive materials evaluation technique. MRS Bulletin 44, 392–402 (2019). https://doi.org/10.1557/mrs.2019.104

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.104

Navigation