Skip to main content

Temporal Analysis of Product (TAP)

  • Chapter
  • First Online:
Springer Handbook of Advanced Catalyst Characterization

Part of the book series: Springer Handbooks ((SHB))

Abstract

The Temporal Analysis of Products (TAP) pulse response method for characterization of catalyst kinetic properties and mechanistic features is presented. Beginning with details of the instrument configuration and different experimental formats, the basic experimental concepts that distinguish the TAP method from kinetic tools such as molecular beam scattering and pulse response in advecting reactors are discussed. Three guiding principles that define the TAP experiment are (i) insignificant perturbation of the catalyst state, (ii) spatial uniformity of the gas within the active zone of the reactor, and (iii) well-defined diffusion in the Knudsen transport regime. In the Knudsen regime, only gas/solid collisions are significant and an intrinsic measurement of catalyst kinetic properties becomes possible. Theoretical tools for extracting kinetic information from TAP pulse response data are described, including numerical solutions, moment-based analysis, and time-dependent analysis of rate and concentration data. Experimental studies are presented that demonstrate the TAP approach to characterization of coverage-dependent sticking coefficients, active site titration at working temperatures for both irreversibly and reversibly adsorbing molecules (heat of adsorption), multiple active sites working within mixtures, mechanistic features including adsorption processes and microkinetic network discrimination, and lifetime of surface intermediates as well as connection of kinetic features across the pressure gap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan, K., Maguire, N., Fushimi, R., Gleaves, J., Goguet, A., Harold, M., Kondratenko, E.V., Menon, U., Schuurman, Y., Yablonsky, G.: Forty years of temporal analysis of products. Catal. Sci. Technol. 7, 2416–2439 (2017)

    CAS  Google Scholar 

  2. Fushimi, R., Gleaves, J.: Recent advances in dynamic chemical characterization using Temporal Analysis of Products. Curr. Opin. Chem. Eng. 21, 10–21 (2018)

    Google Scholar 

  3. Pérez-Ramírez, J., Kondratenko, E.V.: Evolution, achievements, and perspectives of the TAP technique. Catal. Today. 121, 160–169 (2007)

    Google Scholar 

  4. Leppelt, R., Hansgen, D., Widmann, D., Häring, T., Bräth, G., Behm, R.: Design and characterization of a temporal analysis of products reactor. Rev. Sci. Instrum. 78, 104103 (2007)

    CAS  Google Scholar 

  5. Nijhuis, T., Makkee, M., Van Langeveld, A., Moulijn, J.: New insight in the platinum-catalyzed CO oxidation kinetic mechanism by using an advanced TAP reactor system. Appl. Catal. A Gen. 164, 237–249 (1997)

    CAS  Google Scholar 

  6. Mul, G., Banares, M., Cortez, G.G., Van der Linden, B., Khatib, S., Moulijn, J.: MultiTRACK and operando Raman-GC study of oxidative dehydrogenation of propane over alumina-supported vanadium oxide catalysts. Phys. Chem. Chem. Phys. 5, 4378–4383 (2003)

    CAS  Google Scholar 

  7. Ebner, J.R., Gleaves, J.T.: US 5264183. Method and apparatus for carrying out catalyzed chemical reactions and for studying catalysis, 1993

    Google Scholar 

  8. Gleaves, J.T., Ebner, J.R., Kuechler, T.C.: Temporal analysis of products (TAP)—a unique catalyst evaluation system with submillisecond time resolution. Catal. Rev. Sci. Eng. 30, 49–116 (1988)

    CAS  Google Scholar 

  9. Kunz, R., Redekop, E.A., Borders, T., Wang, L., Yablonsky, G.S., Fushimi, R.: Pulse response analysis using the Y-procedure computational method. Chem. Eng. Sci. 192, 46–60 (2018)

    Google Scholar 

  10. Yablonsky, G.S., Marin, G.B.: Kinetics of Chemical Reactions : Decoding Complexity. Wiley-VCH, Weinheim (2011)

    Google Scholar 

  11. Gleaves, J., Yablonskii, G., Phanawadee, P., Schuurman, Y.: “State-Defining” TAP pulse response experiments. In: Studies in Surface Science and Catalysis, pp. 333–340. Elsevier, Amsterdam, the Netherlands (1997)

    Google Scholar 

  12. Yablonsky, G.S., Constales, D., Shekhtman, S.O., Gleaves, J.T.: The Y-procedure: how to extract the chemical transformation rate from reaction–diffusion data with no assumption on the kinetic model. Chem. Eng. Sci. 62, 6754–6767 (2007)

    CAS  Google Scholar 

  13. Wang, Y., Kunz, M.R., Constales, D., Yablonsky, G., Fushimi, R.: Rate/concentration kinetic petals: a transient method to examine the interplay of surface reaction processes. J. Phys. Chem. A 123, 8717–8725 (2019)

    Google Scholar 

  14. Perez-Ramirez, J., Kondratenko, E.V.: Evolution, achievements, and perspectives of the TAP technique. Catal. Today. 121, 160–169 (2007)

    CAS  Google Scholar 

  15. Perez-Ramirez, J., Kondratenko, E.V., Kondratenko, V.A., Baerns, M.: Selectivity-directing factors of ammonia oxidation over PGM gauzes in the Temporal Analysis of Products reactor: primary interactions of NH3 and O2. J. Catal. 227, 90–100 (2004)

    CAS  Google Scholar 

  16. Herschbach, D.R.: Molecular dynamics of elementary chemical reactions (Nobel lecture). Angew. Chem. Int. Ed. Engl. 26, 1221–1243 (1987)

    Google Scholar 

  17. Lee, Y.T.: Molecular beam studies of elementary chemical processes (Nobel lecture). Angew. Chem. Int. Ed. Engl. 26, 939–951 (1987)

    Google Scholar 

  18. Eigen, M.: Immeasurably fast reactions. Nobel Lecture. 11, 1963–1979 (1967)

    Google Scholar 

  19. Schuurman, Y.: Assessment of kinetic modeling procedures of TAP experiments. Catal. Today. 121, 187–196 (2007)

    CAS  Google Scholar 

  20. Gleaves, J.T., Yablonskii, G.S., Phanawadee, P., Schuurman, Y.: TAP-2: an interrogative kinetics approach. Appl. Catal. A Gen. 160, 55–88 (1997)

    CAS  Google Scholar 

  21. van der Linde, S.C., Nijhuis, T., Dekker, F., Kapteijn, F., Moulijn, J.A.: Mathematical treatment of transient kinetic data: combination of parameter estimation with solving the related partial differential equations. Appl. Catal. A Gen. 151, 27–57 (1997)

    Google Scholar 

  22. Rothaemel, M., Baerns, M.: Modeling and simulation of transient adsorption and reaction in vacuum using the temporal analysis of products reactor. Ind. Eng. Chem. Res. 35, 1556–1565 (1996)

    CAS  Google Scholar 

  23. Van, V.A.C., Farrusseng, D., Rebeilleau, M., Decamp, T., Holzwarth, A., Schuurman, Y., Mirodatos, C.: Acceleration in catalyst development by fast transient kinetic investigation. J. Catal. 216, 135–143 (2003)

    Google Scholar 

  24. Gering, K., Baroi, C., Fushimi, R.: Transport modeling and mapping of pulsed reactor dynamics near and beyond the onset of viscid flow. Chem. Eng. Sci. 192, 576–590 (2018)

    CAS  Google Scholar 

  25. Zheng, X., Gleaves, J.T., Yablonsky, G.S., Brownscombe, T., Gaffney, A., Clark, M., Han, S.: Needle in a haystack catalysis. Appl. Catal. A Gen. 341, 86–92 (2008)

    CAS  Google Scholar 

  26. Perez-Ramirez, J., Kondratenko, E.V., Kondratenko, V.A., Baerns, M.: Selectivity-directing factors of ammonia oxidation over PGM gauzes in the Temporal Analysis of Products reactor: secondary interactions of NH3 and NO. J. Catal. 229, 303–313 (2005)

    CAS  Google Scholar 

  27. Kumar, A., Medhekar, V., Harold, M.P., Balakotaiah, V.: NO decomposition and reduction on Pt/Al2O3 powder and monolith catalysts using the TAP reactor. Appl Catal B. 90, 642–651 (2009)

    CAS  Google Scholar 

  28. Maguire, N., Sasegbon, A., Abdelkader, A., Goguet, A., Hardacre, C., Hellgardt, K., Morgan, K., Shekhtman, S.O.: Using temporal analysis of products and flux response technology to determine diffusion coefficients in catalytic monoliths. Chem. Eng. Sci. 87, 224–233 (2013)

    CAS  Google Scholar 

  29. Shekhtman, S.O., Yablonsky, G.S., Chen, S., Gleaves, J.T.: Thin-zone TAP-reactor - theory and application. Chem. Eng. Sci. 54, 4371–4378 (1999)

    CAS  Google Scholar 

  30. Phanawadee, P., Shekhtman, S.O., Jarungmanorom, C., Yablonsky, G.S., Gleaves, J.T.: Uniformity in a thin-zone multi-pulse TAP experiment: numerical analysis. Chem. Eng. Sci. 58, 2215–2227 (2003)

    CAS  Google Scholar 

  31. Shekhtman, S.O., Yablonsky, G.S.: Thin-zone TAP reactor versus differential PFR: analysis of concentration nonuniformity for gas-solid systems. Ind. Eng. Chem. Res. 44, 6518–6522 (2005)

    CAS  Google Scholar 

  32. Wang, Y., Kunz, M.R., Siebers, S., Rollins, H., Gleaves, J., Yablonsky, G., Fushimi, R.: Transient kinetic experiments within the high conversion domain: the case of ammonia decomposition. Catalysts. 9, 104 (2019)

    Google Scholar 

  33. Keipert, O.P., Baerns, M.: Determination of the intracrystalline diffusion coefficients of alkanes in H-ZSM-5 zeolite by a transient technique using the temporal-analysis-of-products (TAP) reactor. Chem. Eng. Sci. 53, 3623–3634 (1998)

    CAS  Google Scholar 

  34. Delgado, J.A., Nijhuis, T.A., Kapteijn, F., Moulijn, J.A.: Determination of adsorption and diffusion parameters in zeolites through a structured approach. Chem. Eng. Sci. 59, 2477–2487 (2004)

    CAS  Google Scholar 

  35. Phanawadee, P., Phongaksorn, M., Chaimongkol, N., Jaree, A., Limtrakul, J.: Mathematical analysis of TAP models for porous catalysts. Chem. Eng. J. (Amsterdam, Neth.). 115, 51–62 (2005)

    CAS  Google Scholar 

  36. Colaris, A.H.J., Hoebink, J.H.B.J., De, C.M.H.J.M., Schouten, J.C.: Intrapellet diffusivities from TAP pulse responses via moment-based analysis. AICHE J. 48, 2587–2596 (2002)

    CAS  Google Scholar 

  37. Berger, R.J., Kapteijn, F., Moulijn, J.A., Marin, G.B., De Wilde, J., Olea, M., Chen, D., Holmen, A., Lietti, L., Tronconi, E.: Dynamic methods for catalytic kinetics. Appl. Catal. A Gen. 342, 3–28 (2008)

    CAS  Google Scholar 

  38. Li, W., Xie, L., Gao, L., Zhao, X., Hu, R., Cheng, Y., Wang, D.: The measurement of gas diffusivity in porous materials by temporal analysis of products (TAP). Catal. Today. 121, 246–254 (2007)

    CAS  Google Scholar 

  39. Wang, D., Li, F., Zhao, X.: Diffusion limitation in fast transient experiments. Chem. Eng. Sci. 59, 5615–5622 (2004)

    CAS  Google Scholar 

  40. Nayak, S.V., Morali, M., Ramachandran, P.A., Dudukovic, M.P.: Transport and sorption studies in beta and USY zeolites via temporal analysis of products (TAP). J. Catal. 266, 169–181 (2009)

    CAS  Google Scholar 

  41. Breitkopf, C., Galinsky, M., Lutecki, M.: Diffusion and reaction in nanostructured sulfated zirconias: a transient TAP study. Int. J. Transp. Phenom. 12, 85–92 (2011)

    Google Scholar 

  42. Lobera, M.P., Biausque, G., Tellez, C., Herguido, J., Menendez, M., Schuurman, Y.: Comparison of different methods for quantitative analysis of TAP pulse-response data for propane dehydrogenation over Pt-Sn-K/γ-Al2O3. Chem. Eng. Sci. 65, 2417–2424 (2010)

    CAS  Google Scholar 

  43. Mills, P., Duduković, M.: Convolution and deconvolution of nonideal tracer response data with application to three-phase packed-beds. Comput. Chem. Eng. 13, 881–898 (1989)

    CAS  Google Scholar 

  44. Svoboda, G.D., Gleaves, J.T., Mills, P.L.: New method for studying the pyrolysis of VPE/CVD precursors under vacuum conditions. Application to trimethylantimony and tetramethyltin. Ind. Eng. Chem. Res. 31, 19–29 (1992)

    CAS  Google Scholar 

  45. Svoboda, G.D., Gleaves, J.T., Mills, P.L.: Detailed modeling of transport-kinetics interactions of ethylene epoxidation at high vacuum and atmospheric pressures. In: Corberán, V.C., Bellón, S.V. (eds.) Studies in Surface Science and Catalysis, pp. 481–493. Elsevier, Amsterdam, the Netherlands (1994)

    Google Scholar 

  46. Schiesser, W.E.: The Numerical Method of Lines: Integration of Partial Differential Equations. Elsevier, Amsterdam, the Netherlands (2012)

    Google Scholar 

  47. Kondratenko, E.V., Pérez-Ramírez, J.: Micro-kinetic analysis of direct N 2 O decomposition over steam-activated Fe-silicalite from transient experiments in the TAP reactor. Catal. Today. 121, 197–203 (2007)

    CAS  Google Scholar 

  48. Soick, M., Wolf, D., Baerns, M.: Determination of kinetic parameters for complex heterogeneous catalytic reactions by numerical evaluation of TAP experiments. Chem. Eng. Sci. 55, 2875–2882 (2000)

    CAS  Google Scholar 

  49. Sincovec, R.F., Madsen, N.K.: Software for nonlinear partial differential equations. ACM Trans. Math. Softw. 1, 232–260 (1975)

    Google Scholar 

  50. Huinink, J.P.: A Quantitative Analysis of Transient Kinetic Experiments: The Oxidation of CO by O2/NO on Pt. Eindhoven University of Technology, Eindhoven, the Netherlands (1995)

    Google Scholar 

  51. Kushekbayev, N.: Kinetic modeling of complex heterogeneously catalyzed reactions using temporal analysis of product method (2017)

    Google Scholar 

  52. Kumar, A., Zheng, X., Harold, M.P., Balakotaiah, V.: Microkinetic modeling of the NO+ H2 system on Pt/Al2O3 catalyst using temporal analysis of products. J. Catal. 279, 12–26 (2011)

    CAS  Google Scholar 

  53. Campbell, C.T.: The degree of rate control: a powerful tool for catalysis research. ACS Catal. 7, 2770–2779 (2017)

    Google Scholar 

  54. Logg, A., Mardal, K.-A., Wells, G.: Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book. Springer Science & Business Media, New York, USA (2012)

    Google Scholar 

  55. Doğu, G., Doğu, T.: Fifty years of moment technique for dynamic analysis of chemical reactor parameters. Int. J. Chem. React. Eng. 17 (2019)

    Google Scholar 

  56. Yablonskii, G.S., Shekhtman, S.O., Chen, S., Gleaves, J.T.: Moment-based analysis of transient response catalytic studies (TAP experiment). Ind. Eng. Chem. Res. 37, 2193–2202 (1998)

    CAS  Google Scholar 

  57. Shekhtman, S.O., Yablonsky, G.S., Gleaves, J.T., Fushimi, R.: “State defining” experiment in chemical kinetics—primary characterization of catalyst activity in a TAP experiment. Chem. Eng. Sci. 58, 4843–4859 (2003)

    CAS  Google Scholar 

  58. Yablonskii, G.V., Bykov, V., Elokhin, V., Gorban, A.: Kinetic Models of Catalytic Reactions. Elsevier, Amsterdam, the Netherlands (1991)

    Google Scholar 

  59. Constales, D., Yablonsky, G.S., Wang, L., Diao, W., Galvita, V.V., Fushimi, R.: Precise non-steady-state characterization of solid active materials with no preliminary mechanistic assumptions. Catal. Today. 298, 203 (2017)

    CAS  Google Scholar 

  60. Shekhtman, S., Maguire, N., Goguet, A., Burch, R., Hardacre, C.: Three primary kinetic characteristics observed in a pulse-response TAP experiment. Catal. Today. 121, 255–260 (2007)

    CAS  Google Scholar 

  61. Redekop, E.A., Yablonsky, G.S., Constales, D., Ramachandran, P.A., Pherigo, C., Gleaves, J.T.: The Y-procedure methodology for the interpretation of transient kinetic data: analysis of irreversible adsorption. Chem. Eng. Sci. 66, 6441–6452 (2011)

    CAS  Google Scholar 

  62. Reece, C.: Kinetic Analysis and Modelling in Heterogeneous Catalysis. Cardiff University, Cardiff, Wales (2017)

    Google Scholar 

  63. Roelant, R., Constales, D., Yablonsky, G.S., Van Keer, R., Rude, M.A., Marin, G.B.: Noise in temporal analysis of products (TAP) pulse responses. Catal. Today. 121, 269–281 (2007)

    CAS  Google Scholar 

  64. Pérez-Ramı́rez, J., Kapteijn, F., Mul, G., Moulijn, J.A.: NO-assisted N2O decomposition over Fe-based catalysts: effects of gas-phase composition and catalyst constitution. J. Catal. 208, 211–223 (2002)

    Google Scholar 

  65. Redekop, E.A., Lazzarini, A., Bordiga, S., Olsbye, U.: A temporal analysis of products (TAP) study of C2-C4 alkene reactions with a well-defined pool of methylating species on ZSM-22 zeolite. J. Catal. 385, 300–312 (2020)

    CAS  Google Scholar 

  66. Dewaele, O., Geers, V.L., Froment, G.F., Marin, G.B.: The conversion of methanol to olefins: a transient kinetic study. Chem. Eng. Sci. 54, 4385–4395 (1999)

    CAS  Google Scholar 

  67. Scharfe, M., Capdevila-Cortada, M., Kondratenko, V.A., Kondratenko, E.V., Colussi, S., Trovarelli, A., López, N., Pérez-Ramírez, J.: Mechanism of ethylene oxychlorination on ceria. ACS Catal. 8, 2651–2663 (2018)

    CAS  Google Scholar 

  68. Wang, Y., Kapteijn, F., Makkee, M.: NOx reduction in the Di-Air system over noble metal promoted ceria. Appl. Catal. B Environ. 231, 200–212 (2018)

    CAS  Google Scholar 

  69. Kumar, A., Harold, M.P., Balakotaiah, V.: Isotopic studies of NOX storage and reduction on Pt/BaO/Al2O3 catalyst using temporal analysis of products. J. Catal. 270, 214–223 (2010)

    CAS  Google Scholar 

  70. Bueno-López, A., Krishna, K., Van der Linden, B., Mul, G., Moulijn, J., Makkee, M.: On the mechanism of model diesel soot-O2 reaction catalysed by Pt-containing La3+-doped CeO2: a TAP study with isotopic O2. Catal. Today. 121, 237–245 (2007)

    Google Scholar 

  71. Wang, L.-C., Zhong, Y., Widmann, D., Weissmüller, J., Behm, R.J.: Oxygen adsorption and low-temperature CO oxidation on a nanoporous Au catalyst: reaction mechanism and foreign metal effects. Top. Catal. 61, 446–461 (2018)

    CAS  Google Scholar 

  72. Wang, L.-C., Personick, M.L., Karakalos, S., Fushimi, R., Friend, C.M., Madix, R.J.: Active sites for methanol partial oxidation on nanoporous gold catalysts. J. Catal. 344, 778–783 (2016)

    CAS  Google Scholar 

  73. Boudart, M.: Turnover rates in heterogeneous catalysis. Chem. Rev. 95, 661–666 (1995)

    CAS  Google Scholar 

  74. Boudart, M., Djéga-Mariadassou, G.: Kinetics of Heterogeneous Catalytic Reactions. Princeton University Press, Princeton, USA (1984)

    Google Scholar 

  75. Widmann, D., Liu, Y., Schueth, F., Behm, R.J.: Support effects in the Au-catalyzed CO oxidation - correlation between activity, oxygen storage capacity, and support reducibility. J. Catal. 276, 292–305 (2010)

    CAS  Google Scholar 

  76. Constales, D., Fang, Z., Kunz, M.R., Yablonsky, G., Fushimi, R.: Methods for determining the intrinsic kinetic characteristics of irreversible adsorption processes. Chem. Eng. Sci. 207, 344–351 (2019)

    CAS  Google Scholar 

  77. Shekhtman, S., Goguet, A., Burch, R., Hardacre, C., Maguire, N.: CO multipulse TAP studies of 2% Pt/CeO 2 catalyst: influence of catalyst pretreatment and temperature on the number of active sites observed. J. Catal. 253, 303–311 (2008)

    CAS  Google Scholar 

  78. Morgan, K., Cole, K.J., Goguet, A., Hardacre, C., Hutchings, G.J., Maguire, N., Shekhtman, S.O., Taylor, S.H.: TAP studies of CO oxidation over CuMnOX and Au/CuMnOX catalysts. J. Catal. 276, 38–48 (2010)

    CAS  Google Scholar 

  79. Dewaele, O., Froment, G.F.: TAP study of the sorption of CO and CO2 on γAl2O3. Appl. Catal. A Gen. 185, 203–210 (1999)

    CAS  Google Scholar 

  80. Linders, M., Van Den Broeke, L., Nijhuis, T., Kapteijn, F., Moulijn, J.: Modelling sorption and diffusion in activated carbon: a novel low pressure pulse-response technique. Carbon. 39, 2113–2130 (2001)

    CAS  Google Scholar 

  81. Schuurman, Y., Pantazidis, A., Mirodatos, C.: The TAP-2 reactor as an alternative tool for investigating FCC catalysts. Chem. Eng. Sci. 54, 3619–3625 (1999)

    CAS  Google Scholar 

  82. Breitkopf, C.: A transient TAP study of the adsorption of C4-hydrocarbons on sulfated zirconias. J. Mol. Catal. A Chem. 226, 269–278 (2005)

    CAS  Google Scholar 

  83. Farrusseng, D., Daniel, C., Gaudillere, C., Ravon, U., Schuurman, Y., Mirodatos, C., Dubbeldam, D., Frost, H., Snurr, R.Q.: Heats of adsorption for seven gases in three metal− organic frameworks: systematic comparison of experiment and simulation. Langmuir. 25, 7383–7388 (2009)

    CAS  Google Scholar 

  84. Zheng, X., Veith, G.M., Redekop, E., Lo, C.S., Yablonsky, G.S., Gleaves, J.T.: Oxygen and CO adsorption on Au/SiO2 catalysts prepared by magnetron sputtering: the role of oxygen storage. Ind. Eng. Chem. Res. 49, 10428–10437 (2010)

    CAS  Google Scholar 

  85. Redekop, E.A., Yablonsky, G.S., Galvita, V.V., Constales, D., Fushimi, R., Gleaves, J.T., Marin, G.B.: Momentary Equilibrium (ME) in transient kinetics and its application for estimating the concentration of catalytic sites. Ind. Eng. Chem. Res. 52, 15417–15427 (2013)

    CAS  Google Scholar 

  86. Hong, J., Pietrzyk, S., Khodakov, A.Y., Chu, W., Olea, M., Balcaen, V., Marin, G.B.: TAP investigation of hydrogen and carbon monoxide adsorption on a silica-supported cobalt catalyst. Appl. Catal. A Gen. 375, 116–123 (2010)

    CAS  Google Scholar 

  87. Kondratenko, E., Buyevskaya, O., Soick, M., Baerns, M.: Transient kinetics and mechanism of oxygen adsorption over oxide catalysts from the TAP-reactor system. Catal. Lett. 63, 153–159 (1999)

    CAS  Google Scholar 

  88. Olea, M., Kunitake, M., Shido, T., Iwasawa, Y.: TAP study on CO oxidation on a highly active au/Ti(OH)4* catalyst. Phys. Chem. Chem. Phys. 3, 627–631 (2001)

    CAS  Google Scholar 

  89. Buyevskaya, O., Rothaemel, M., Zanthoff, H., Baerns, M.: Transient studies on the role of oxygen activation in the oxidative coupling of methane over Sm 2 O 3, Sm 2 O 3/MgO, and MgO catalytic surfaces. J. Catal. 150, 71–80 (1994)

    CAS  Google Scholar 

  90. Schwartz, S., Schmidt, L., Fisher, G.B.: Carbon monoxide+ oxygen reaction on rhodium (III): steady-state rates and adsorbate coverages. J. Phys. Chem. 90, 6194–6200 (1986)

    CAS  Google Scholar 

  91. Morgan, K., Inceesungvorn, B., Goguet, A., Hardacre, C., Meunier, F.C., Shekhtman, S.O.: TAP studies on 2% Ag/γ–Al 2 O 3 catalyst for selective reduction of oxygen in a H 2-rich ethylene feed. Catal. Sci. Technol. 2, 2128–2133 (2012)

    CAS  Google Scholar 

  92. Kondratenko, E.V., Sakamoto, Y., Okumura, K., Shinjoh, H.: Transient analysis of oxygen storage capacity of Pt/CeO2-ZrO2 materials with millisecond- and second-time resolution. Appl Catal B. 89, 476–483 (2009)

    CAS  Google Scholar 

  93. Burch, R., Millington, P.J., Walker, A.: Mechanism of the selective reduction of nitrogen monoxide on platinum-based catalysts in the presence of excess oxygen. Appl. Catal. B Environ. 4, 65–94 (1994)

    CAS  Google Scholar 

  94. Widmann, D., Krautsieder, A., Walter, P., Brückner, A., Behm, R.J.: How temperature affects the mechanism of CO oxidation on Au/TiO2: a combined EPR and TAP reactor study of the reactive removal of TiO2 surface lattice oxygen in Au/TiO2 by CO. ACS Catal. 6, 5005–5011 (2016)

    CAS  Google Scholar 

  95. Baerns, M., Imbihl, R., Kondratenko, V.A., Kraehnert, R., Offermans, W.K., Van, S.R.A., Scheibe, A.: Bridging the pressure and material gap in the catalytic ammonia oxidation: structural and catalytic properties of different platinum catalysts. J. Catal. 232, 226–238 (2005)

    CAS  Google Scholar 

  96. Granger, P., Renème, Y., Dhainaut, F., Schuurman, Y., Mirodatos, C.: NO adsorption and reaction on aged Pd–Rh natural gas vehicle catalysts: a combined TAP and steady-state kinetic approach. Top. Catal. 60, 289–294 (2017)

    CAS  Google Scholar 

  97. Renème, Y., Pietrzyk, S., Dhainaut, F., Chaar, M., van Veen, A.C., Granger, P.: Reaction pathways involved in CH(4) conversion on Pd/Al(2)O(3) catalysts: TAP as a powerful tool for the elucidation of the effective role of the metal/support interface. Front. Chem. 4, 7 (2016)

    Google Scholar 

  98. Mallens, E., Hoebink, J., Marin, G.: The reaction mechanism of the partial oxidation of methane to synthesis gas: a transient kinetic study over rhodium and a comparison with platinum. J. Catal. 167, 43–56 (1997)

    CAS  Google Scholar 

  99. Creten, G., Lafyatis, D.S., Froment, G.F.: Transient kinetics from the TAP reactor system: application to the oxidation of propylene to acrolein. J. Catal. 154, 151–162 (1995)

    CAS  Google Scholar 

  100. Hu, R., Xie, L., Ding, S., Hou, J., Cheng, Y., Wang, D.: CO oxidation and oxygen-assisted CO adsorption/desorption on Ag/MnOx catalysts. Catal. Today. 131, 513–519 (2008)

    CAS  Google Scholar 

  101. Pantazidis, A., Bucholz, S., Zanthoff, H., Schuurman, Y., Mirodatos, C.: A TAP reactor investigation of the oxidative dehydrogenation of propane over a V–Mg–O catalyst. Catal. Today. 40, 207–214 (1998)

    CAS  Google Scholar 

  102. Kushekbayev, N.: Kinetic Modeling of Complex Heterogeneously Catalyzed Reactions Using Temporal Analysis of Product Method. Nazarbayev University School of Engineering, Astana, Kazakhstan (2017)

    Google Scholar 

  103. Reece, C., Redekop, E.A., Karakalos, S., Friend, C.M., Madix, R.J.: Crossing the great divide between single-crystal reactivity and actual catalyst selectivity with pressure transients. Nat. Catal. 1, 1 (2018)

    Google Scholar 

  104. Redekop, E.A., Yablonsky, G.S., Constales, D., Ramachandran, P.A., Gleaves, J.T., Marin, G.B.: Elucidating complex catalytic mechanisms based on transient pulse-response kinetic data. Chem. Eng. Sci. 110, 20–30 (2014)

    CAS  Google Scholar 

  105. Gleaves, J.T., Sault, A.G., Madix, R.J., Ebner, J.R.: Ethylene oxidation on silver powder: a TAP reactor study. J. Catal. 121, 202–218 (1990)

    CAS  Google Scholar 

  106. Wang, Y., Qian, J., Fang, Z., Kunz, M.R., Yablonsky, G., Fortunelli, A., Goddard III, W.A., Fushimi, R.R.: Understanding reaction networks through controlled approach to equilibrium experiments using transient methods. J. Am. Chem. Soc. 143, 10998–11006 (2021)

    CAS  Google Scholar 

  107. Nobukawa, T., Yoshida, M., Kameoka, S., Ito, S.-i., Tomishige, K., Kunimori, K.: Role of nascent oxygen transients in N2O decomposition and selective catalytic reduction of N2O. Catal. Today. 93, 791–796 (2004)

    Google Scholar 

  108. Kondratenko, E.V., Perez-Ramirez, J.: Importance of the lifetime of oxygen species generated by N2O decomposition for hydrocarbon activation over Fe-silicalite. Appl Catal B. 64, 35–41 (2006)

    CAS  Google Scholar 

  109. Chakrabarti, A., Ford, M.E., Gregory, D., Hu, R., Keturakis, C.J., Lwin, S., Tang, Y., Yang, Z., Zhu, M., Banares, M.A.: A decade+ of operando spectroscopy studies. Catal. Today. 283, 27–53 (2017)

    CAS  Google Scholar 

  110. Laudenschleger, D., Ruland, H., Muhler, M.: Identifying the nature of the active sites in methanol synthesis over Cu/ZnO/Al2O3 catalysts. Nat. Commun. 11, 3898 (2020)

    Google Scholar 

  111. Assmann, J., Loffler, E., Birkner, A., Muhler, M.: Ruthenium as oxidation catalyst: bridging the pressure and material gaps between ideal and real systems in heterogeneous catalysis by applying DRIFT spectroscopy and the TAP reactor. Catal. Today. 85, 235–249 (2003)

    CAS  Google Scholar 

  112. Assmann, J., Narkhede, V., Breuer, N., Muhler, M., Seitsonen, A., Knapp, M., Crihan, D., Farkas, A., Mellau, G., Over, H.: Heterogeneous oxidation catalysis on ruthenium: bridging the pressure and materials gaps and beyond. J. Phys. Condens. Matter. 20, 184017 (2008)

    Google Scholar 

  113. Delgado, J.A., Nijhuis, T.A., Kapteijn, F., Moulijn, J.A.: Modeling of fast pulse responses in the Multitrack: an advanced TAP reactor. Chem. Eng. Sci. 57, 1835–1847 (2002)

    CAS  Google Scholar 

  114. Svoboda, G.: Fundamental Transport-Kinetics Models for Interpretation of Temporal Analysis of Products (TAP) Reactor Transient Response Data with Application to Reactive Systems. Washington University Saint Louis, Saint Louis, USA (1993)

    Google Scholar 

  115. Beck, B., Fleischer, V., Arndt, S., Hevia, M.G., Urakawa, A., Hugo, P., Schomäcker, R.: Oxidative coupling of methane—a complex surface/gas phase mechanism with strong impact on the reaction engineering. Catal. Today. 228, 212–218 (2014)

    CAS  Google Scholar 

  116. Yonge, A., Kunz, M.R., Batchu, R., Fang, Z., Issac, T., Fushimi, R. Medford, A.J.: TAPsolver: A Python package for the simulation and analysis of TAP reactor experiments. Chem. Eng. J., 420, 129377 (2021)

    Google Scholar 

  117. Kunz, M.R., Yonge, A., Fang, Z., Batchu, R., Medford, A.J., Constales, D., Yablonsky, G., Fushimi, R.: Data driven reaction mechanism estimation via transient kinetics and machine learning. Chem. Eng. J., 420, 129610 (2021)

    Google Scholar 

  118. Fang, Z., Confer, M.P., Wang, Y., Wang, Q., Kunz, M.R., Dufek, E. J., Liaw, B., Klein, T. M., Dixon, D.A., Fushimi, R.: Formation of surface impurities on Lithium–Nickel–Manganese–Cobalt oxides in the presence of CO2 and H2O. J. Am. Chem. Soc. 143(27), 10261–10274 (2021)

    Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge the contributions of J.T. Gleaves, G. Yablonsky, M.R. Kunz, C. Reece, R. Batchu, Y. Chen, J. Posthuma de Boer and Y. Wang in the editing and discussion of this chapter. J.M. Yoda is acknowledged for many fruitful discussions. This chapter was supported by US Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy (EERE), and Advanced Manufacturing Office Next Generation R&D Projects under contract no. DE-AC07-05ID14517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Fushimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fushimi, R. (2023). Temporal Analysis of Product (TAP). In: Wachs, I.E., Bañares, M.A. (eds) Springer Handbook of Advanced Catalyst Characterization. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-031-07125-6_40

Download citation

Publish with us

Policies and ethics