Skip to main content
Log in

Rates of diffusion-limited reaction in periodic systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The pseudopotential and perturbation theory are used to derive the first three terms in the expansion of the smallest eigenvalue of the Helmholtz equation both for infinite two-dimensional systems with an array of perfectly absorbing circles centered on (1) a square lattice and (2) a triangular lattice, and also for infinite three-dimensional systems both with arrays of perfectly absorbing interspersed cylinders and with an array of perfectly absorbing spheres centered on (1), a simple cubic lattice, (2) a body-centered cubic lattice, and (3) a facecentered cubic lattice. In all cases, the perturbation parameter involves the ratio of the radius of the absorber to the lattice spacing. These eigenvalues and the corresponding eigenfunctions are used to compute the first three terms of expansions of the first passage time of a diffusing point particle randomly placed outside the absorbers. Expressing the perturbation parameter as a function of the area or volume fraction occupied by the absorbers reveals a remarkable similarity among the rates of diffusion-limited reaction for arrays of absorbers and the corresponding radially symmetric system containing one central absorber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerson Huang and C. N. Yang,Phys. Rev. 105:767–775 (1957).

    Google Scholar 

  2. P. M. Morse and H. Feshbach,Methods of Theoretical Physics, Vol. 2 (McGraw-Hill, New York, 1953), p. 1001.

    Google Scholar 

  3. J. R. Lebenhaft and R. Kapral,J. Stat. Phys. 20:25–56 (1979).

    Google Scholar 

  4. B. U. Felderhof,Physica 130A:34–56 (1985).

    Google Scholar 

  5. M. Abramowitz and I. Stegun, eds.,Handbook of Mathematical Functions (U. S. Government Printing Office, Washington, D. C., 1964), p. 360.

    Google Scholar 

  6. R. Courant,Differential and Integral Calculus, Vol. 2 (Blackie, London, 1936), p. 367.

    Google Scholar 

  7. M. V. Berry,Ann. Phys. (N.Y.) 131:163–216 (1981).

    Google Scholar 

  8. Eldon R. Hansen,A Table of Series and Products (Prentice-Hall, Englewood Cliffs, New Jersey, 1975), p. 243.

    Google Scholar 

  9. H. Hasimoto,J. Fluid Mech. 5:317–328.

  10. Linus Pauling and E. Bright Wilson,Introduction to Quantum Mechanics (McGraw-Hill, New York, 1935), p. 165.

    Google Scholar 

  11. Otto Emersleben,Phys. Z. 24:73–80 (1923).

    Google Scholar 

  12. Otto Emersleben,Phys. Z. 24:97–104 (1923).

    Google Scholar 

  13. Rosemary A. Coldwell-Horsfall and Alexei A. Maraudin,J. Math. Phys. 1:395–404 (1960).

    Google Scholar 

  14. Howard C. Berg and Edward M. Purcell,Biophys. J. 20:193–219 (1977).

    Google Scholar 

  15. Lord Rayleigh,Phil. Mag. 34:481–502 (1892).

    Google Scholar 

  16. Harold Levine,J. Inst. Math. Appl. 2:12–28 (1966).

    Google Scholar 

  17. Dikeos Soumpasis,J. Chem. Phys. 69:3190–3196 (1978).

    Google Scholar 

  18. G. N. Watson,A Treatise on the Theory of Bessel Functions, 2nd ed. (University Press, Cambridge, 1966), p. 388.

    Google Scholar 

  19. I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series and Products (Academic Press, New York, 1980), p. 978.

    Google Scholar 

  20. W. L. Slattery, G. D. Doolen, and H. E. DeWitt,Phys. Rev. A 21:2087–2095 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torney, D.C., Goldstein, B. Rates of diffusion-limited reaction in periodic systems. J Stat Phys 49, 725–750 (1987). https://doi.org/10.1007/BF01009354

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009354

Key words

Navigation