Skip to main content
Log in

Critical exponents of Manhattan Hamiltonian walks in two dimensions, from Potts andO(n) models

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a set of Hamiltonian circuits filling a Manhattan lattice, i.e., a square lattice with alternating traffic regulation. We show that the generating function (with fugacityz) of this set is identical to the critical partition function of aq-state Potts model on an unoriented square lattice withq 1/2 =z. The set of critical exponents governing correlations of Hamiltonian circuits is derived using a Coulomb gas technique. These exponents are also found to be those of an O(n) vector model in the low-temperature phase withn =q 1/2 =z. The critical exponents in the limitz = 0 are then those of spanning trees (q= 0) and of dense polymers (n=0,T < Tc), corresponding to a conformal theory with central chargeC = −2. This shows that the Manhattan orientation and the Hamiltonian constraint of filling all the lattice are irrelevant for the infrared critical properties of Hamiltonian walks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Kasteleyn,Physica 29:1329 (1963).

    Google Scholar 

  2. M. N. Barber,Physica 48:237 (1970); A. Malakis,Physica 84A:256 (1976).

    Google Scholar 

  3. M. Gordon, P. Kapadia, and A. Malakis,J. Phys. A 9:751 (1976).

    Google Scholar 

  4. P. D. Gujrati and M. Goldstein,J. Chem. Phys. 74:2596 (1981), and references therein.

    Google Scholar 

  5. T. G. Schmalz, G. E. Hite, and D. J. Klein,J. Phys. A 17:445 (1984).

    Google Scholar 

  6. H. Orland, C. Itzykson, and C. De Dominicis,J. Phys. Lett. (Paris) 46:L353 (1985).

    Google Scholar 

  7. J. F. Nagle, P. D. Gujrati, and M. Goldstein,J. Phys. Chem. 8:4599 (1984), and references therein.

    Google Scholar 

  8. H. Saleur,J. Phys. A 19:2409 (1986).

    Google Scholar 

  9. B. Duplantier,J. Phys. A 19:L1009 (1986).

    Google Scholar 

  10. H. Saleur,Phys. Rev. B 35:3657 (1987).

    Google Scholar 

  11. B. Duplantier and H. Saleur, Saclay report PhT/87-054,Nucl. Phys. B[FS], to appear.

  12. M. den Nijs,Phys. Rev. B 27:1674 (1983), and references therein.

    Google Scholar 

  13. B. Nienhuis,J. Stat. Phys. 34:781 (1984); inPhase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1987).

    Google Scholar 

  14. B. Duplantier,Phys. Rev. Lett. 57:941 (1986).

    Google Scholar 

  15. B. Duplantier and F. David, Saclay report PhT/87-112.

  16. F. Y. Wu,Rev. Mod. Phys. 54:235 (1982), and references therein.

    Google Scholar 

  17. R. J. Baxter, S. B. Kelland, and F. Y. Wu,J. Phys. A 9:397 (1976).

    Google Scholar 

  18. R. J. Baxter,J. Phys. C 6:L445 (1973).

    Google Scholar 

  19. H. J. F. Knops and L. W. J. den Ouden,Ann. Phys. (N.Y.) 138:155 (1982).

    Google Scholar 

  20. B. Nienhuis,J. Phys. A 15:199 (1982).

    Google Scholar 

  21. H. Van Beijeren,Phys. Rev. Lett. 38:993 (1977).

    Google Scholar 

  22. J. V. José, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson,Phys. Rev. B 16:12 (1977).

    Google Scholar 

  23. M. P. M. den Nijs,J. Phys. A 17:L295 (1984).

    Google Scholar 

  24. B. Nienhuis and H. J. F. Knops,Phys. Rev. B 32:1872 (1985).

    Google Scholar 

  25. H. Saleur and B. Duplantier,Phys. Rev. Lett. 58:2325 (1987).

    Google Scholar 

  26. P. W. Kasteleyn and C. M. Fortuin,J. Phys. Soc. Jpn. 26(Suppl.):11 (1969).

    Google Scholar 

  27. B. Duplantier and P. Pfeuty,J. Phys. A 15:L127 (1982).

    Google Scholar 

  28. E. Domany, D. Mukamel, B. Nienhuis, and A. Schwimmer,Nucl. Phys. B 190[FS3]:279 (1981).

    Google Scholar 

  29. B. Duplantier, in preparation.

  30. H. Saleur,J. Phys. A 19:L807 (1986).

    Google Scholar 

  31. J. Cardy, inPhase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, to be published), and references therein.

  32. V. Dotsenko and V. A. Fateev,Nucl. Phys. B 240:212 (1984).

    Google Scholar 

  33. V. G. Kac, inLecture Notes in Physics, Vol. 94 (1979), p. 441.

    Google Scholar 

  34. C. M. Fortuin and P. W. Kasteleyn,Physica 57:536 (1972).

    Google Scholar 

  35. G. Kirchhoff,Ann. Phys. Chem. 72:497 (1847).

    Google Scholar 

  36. B. Duplantier,Phys. Rev. B 35:5290 (1987).

    Google Scholar 

  37. K. Binder, inPhase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1983), and references therein; H. W. Diehl, inPhase Transitions and Critical Phenomena, Vol. 10, C. Domb and J. L. Lebowitz, eds. (Academic Press, New York, 1986).

    Google Scholar 

  38. J. L. Cardy,Nucl. Phys. B 240[FS12]:514 (1984).

    Google Scholar 

  39. B. Duplantier and H. Saleur,Phys. Rev. Lett. 57:3179 (1986).

    Google Scholar 

  40. E. Eisenriegler, K. Kremer, and K. Binder,J. Chem. Phys. 77:6296 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duplantier, B. Critical exponents of Manhattan Hamiltonian walks in two dimensions, from Potts andO(n) models. J Stat Phys 49, 411–431 (1987). https://doi.org/10.1007/BF01009343

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009343

Key words

Navigation