Skip to main content
Log in

Multi-Dimensional Random Walks and Integrable Phase Models

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider random multi-dimensional lattice walks bounded by a hyperplane, calling them walks over multi-dimensional simplicial lattices. We demonstrate that generating functions of these walks are dynamical correlation functions of a certain type of exactly solvable quantum phase models describing strongly correlated bosons on a chain. Walks over oriented lattices are related to the phase model with a non-Hermitian Hamiltonian, while walks over disoriented ones are related to the model with a Hermitian Hamiltonian. The calculation of the generating functions is based on the algebraic Bethe Ansatz approach to the solution of integrable models. The answers are expressed through symmetric functions. Continuous-time quantum walks bounded by a onedimensional lattice of finite length are also studied. Bibliography: 40 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Stanley, Enumerative Combinatorics, Vols. 1, 2, Cambridge Univ. Press, Cambridge (1996, 1999).

  2. C. Krattenthaler and S. G. Mohanty, Lattice Path Combinatorics – Applications to Probability and Statistics, Wiley, New York (2003).

    Google Scholar 

  3. C. Krattenthaler, The Major Counting of Nonintersecting Lattice Paths and Generating Functions for Tableaux, Memoirs of the Amer. Math. Soc., 115, No. 552, Amer. Math. Soc. (1995).

  4. C. Krattenthaler, “Lattice path enumeration,” arXiv:1503.05930.

  5. M. Fisher, “Walks, walls, wetting and melting,” J. Stat. Phys., 34, 667–729 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  6. P. Forrester, “Random walks and random permutations,” J. Phys. A, 34, L417–L423 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Bravyi, L. Caha, R. Movassagh, D. Nagaj, and P. W. Shor, “Criticality without frustration for quantum spin-1 chains,” Phys. Rev. Lett., 109, 207202–207205 (2012).

    Article  Google Scholar 

  8. R. Movassagh, “Entanglement and correlation functions of a recent exactly solvable spin chain,” arXiv:1602.07761.

  9. O. Salberger and V. Korepin, “Fredkin spin chain,” arXiv:1605.03842v1.

  10. L. A. Takhtadzhyan and L. D. Faddeev, “The quantum method of the inverse problem and the Heisenberg XY Z model,” Russian Math. Surveys, 34, 11–68 (1979).

    Article  Google Scholar 

  11. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge (1993).

    Book  MATH  Google Scholar 

  12. C. Korff and C. Stroppel, “The \( \widehat{sl{(n)}_k} \) -WZNW fusion ring: a combinatorial construction and a realisation as quotient of quantum cohomology,” Adv. Math., 225, 200–268 (2010).

  13. N. V. Tsilevich, “Quantum inverse scattering method for the q-boson model and symmetric functions,” Funct. Anal. Appl., 40, 207–217 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Bogoliubov, “XXO Heisenberg chain and random walks,” J. Math. Sci., 138, 5636–5643 (2006).

    Article  MathSciNet  Google Scholar 

  15. N. M. Bogoliubov and C. Malyshev, “Correlation functions of XX0 Heisenberg chain, q-binomial determinants, and random walks,” Nucl. Phys. B, 879, 268–291 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Bogoliubov and C. Malyshev, “Integrable models and combinatorics,” Russian Math. Surveys, 70, 789–856 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  17. D. M. Bressoud, Proofs and Confirmations. The Story of the Alternating Sign Matrix Conjecture, Cambridge Univ. Press, Cambridge (1999).

  18. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford (1995).

    MATH  Google Scholar 

  19. Y. Aharonov, L. Davidovich, and N. Zagury, “Quantum random walks,” Phys. Rev. A, 48, 1687–1690 (1993).

    Article  Google Scholar 

  20. E. Farhi and S. Gutmann, “Quantum computation and decision trees,” Phys. Rev. A, 58, 915–928 (1998).

    Article  MathSciNet  Google Scholar 

  21. F. Strauch, “Connecting the discrete- and continuous-time quantum walks,” Phys. Rev. A, 74, 030301(R) (2006).

  22. P. Preiss, R. Ma, M. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam, and M. Greiner, “Strongly correlated quantum walks in optical lattices,” Science, 347, 1229–1233 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Cedzich, A. Grünbaum, C. Stahl, L. Velázquez, A. Werner, and R. Werner, “Bulk-edge correspondence of one-dimensional quantum walks,” arXiv:1502.0592.

  24. Y. Lahini, G. Steinbrecher, A. Bookatz, and D. Englund, “High-fidelity quantum logic gates with interacting bosons on a 1D lattice,” arXiv:1501.04349.

  25. T. Mackay, S. Bartlett, L. Stephenson, and B. Sanders, “Quantum walks in higher dimensions,” J. Phys. A, 35, 2745–2753 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  26. K. Watabe, N. Kobayashi, M. Katori, and N. Konno, “Limit distributions of twodimensional quantum walks,” Phys. Rev. A, 77, 062331 (2008).

    Article  Google Scholar 

  27. A. Romanelli, R. Donangelo, R. Portugal, and F. Marquezino, “Thermodynamics of N-dimensional quantum walks,” arXiv:1408.5300.

  28. P. R. G. Mortimer and T. Prelling, “On the number of walks in a triangular domain,” arXiv:1402.4448.

  29. N. Bogoliubov, “Quantum walks and phase operators,” to be published.

  30. P. Carruters and M. Nieto, “Phase and angle variables in quantum mechanics,” Rev. Mod. Phys., 40, 411 (1968).

    Article  Google Scholar 

  31. N. M. Bogoliubov and T. Nassar, “On the spectrum of the non-Hermitian phase-difference model,” Phys. Lett. A, 234, 345–350 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  32. A. M. Vershik, “Equipped graded graphs, projective limits of simplices, and their boundaries,” J. Math. Sci., 209, 860–873 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  33. N. Bogoliubov, R. Bullough, and J. Timonen, “Critical behavior for correlated strongly coupled boson systems in 1 + 1 dimensions,” Phys. Rev. Lett., 25, 3933–3936 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  34. N. Bogoliubov, A. Izergin, and N. Kitanine, “Correlation functions for a strongly correlated boson systems,” Nucl. Phys. B, 516, 501–528 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  35. N. Bogoliubov, “Calculation of correlation functions in totally asymmetric exactly solvable models on a ring,” Theor. Math. Phys., 175, 755–762 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  36. N. Bogoliubov, “Boxed plane partitions as an exactly solvable boson model,” J. Phys. A, 38, 9415–9430 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  37. N. Bogoliubov, “Form factors, plane partitions and random walks,” J. Math. Sci., 158, 771–786 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  38. N. M. Bogolyubov, A. G. Izergin, N. A. Kitanin, and A. G. Pronko, “On the probabilities of survival and hopping of states in a phase model on a finite lattice,” Proc. Steklov Inst. Math., 226, 29–41 (1999).

    MathSciNet  Google Scholar 

  39. N. M. Bogoliubov, A. G. Izergin, N. A. Kitanine, A. G. Pronko, and J. Timonen, “Quantum dynamics of strongly interacting boson systems: atomic beam splitters and coupled Bose–Einstein condensates,” Phys. Rev. Lett., 86, 4439–4442 (2001).

    Article  Google Scholar 

  40. N. Bogoliubov, J. Timonen, and M. Zvonarev, “Coherent quantum oscillations in coupled traps with ultracold atoms,” arXiv:cond-mat/0201335.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Bogoliubov or C. Malyshev.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 448, 2016, pp. 48–68.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogoliubov, N., Malyshev, C. Multi-Dimensional Random Walks and Integrable Phase Models. J Math Sci 224, 199–213 (2017). https://doi.org/10.1007/s10958-017-3405-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3405-5

Navigation