Skip to main content

Lectures on the Ising and Potts Models on the Hypercubic Lattice

  • Conference paper
  • First Online:
Random Graphs, Phase Transitions, and the Gaussian Free Field (SSPROB 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 304))

Included in the following conference series:

Abstract

Phase transitions are a central theme of statistical mechanics, and of probability more generally. Lattice spin models represent a general paradigm for phase transitions in finite dimensions, describing ferromagnets and even some fluids (lattice gases). It has been understood since the 1980s that random geometric representations, such as the random walk and random current representations, are powerful tools to understand spin models. In addition to techniques intrinsic to spin models, such representations provide access to rich ideas from percolation theory. In recent years, for two-dimensional spin models, these ideas have been further combined with ideas from discrete complex analysis. Spectacular results obtained through these connections include the proofs that interfaces of the two-dimensional Ising model have conformally invariant scaling limits given by SLE curves and the fact that the connective constant of the self-avoiding walk on the hexagonal lattice is given by \(\sqrt{2+\sqrt{2}}\). In higher dimensions, the understanding also progresses with the proof that the phase transition of Potts models is sharp, and that the magnetization of the three-dimensional Ising model vanishes at the critical point. These notes are largely inspired by [40, 42, 43].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    One may also have \(\beta _c^\mathrm{exp}<\beta _c<\infty \), as shown in [70] for the planar clock model with \(q\gg 1\) states, but this situation is less common.

  2. 2.

    Kosterlitz and Thouless were awarded a Nobel prize in 2016 for their work on topological phase transitions.

  3. 3.

    The probability that \(\omega ^t_e=1\) is exactly the probability that \(\omega _e=1\) knowing the state of all the other edges.

  4. 4.

    Note that one may wish to pick \(K=3\) in (1.12) instead of a (a priori) larger K, but that this choice would make the construction of the trifurcations described below more difficult due to the fact that the three clusters may arrive very close to each other on the corner of \(\varLambda _n\), and therefore prevent us from “rewiring them” to construct a trifurcation at the origin.

  5. 5.

    The event \(\mathcal {A}_n{\setminus }\mathcal {H}_n\) is included in the event that there are two distinct clusters in \(R_n\) going from \(\varLambda _k\) to \(\partial R_n\). The intersection of the latter events for \(n\ge 1\) is included in the event that there are two distinct infinite clusters, which has zero probability. Thus, the probability of \(\mathcal {A}_n{\setminus } \mathcal {H}_n\) goes to 0 as n tends to infinity.

  6. 6.

    A sequence \((f_n)\) of continuous homeomorphisms from [0, 1] onto itself satisfies a sharp threshold if for any \(\varepsilon >0\), \(\varDelta _n(\varepsilon ):=f_n^{-1}(1-\varepsilon )-f_n^{-1}(\varepsilon )\) tends to 0.

  7. 7.

    Formally, we only obtained the result for n even, but the result for n odd can be obtained similarly.

  8. 8.

    Recall that \((\omega ^*)^1\) is the graph \(\omega ^*\) where all vertices of \(\partial G^*\) are identified together. This graph can clearly be embedded in the plane by “moving” the vertices of \(\partial G^*\) to a single point chosen in the exterior face of \(\omega \), and drawing the edges incident to \(\partial G^*\) by “extending” the corresponding edges of \(\omega ^*\) by continuous curves not intersecting each other or edges of \(\omega \), and going to this chosen point.

  9. 9.

    Truncated correlations is a vague term referring to differences of correlation functions (for instance \(\mu ^+_\beta [\sigma _x\sigma _y]-\mu ^+_\beta [\sigma _x]\mu ^+_\beta [\sigma _y]\) or \(\mu ^+_\beta [\sigma _x\sigma _y]-\mu ^\mathrm{f}_\beta [\sigma _x\sigma _y]\) or \(U_4(x_1,x_2,x_3,x_4)\) defined later in this section).

  10. 10.

    When \(A=\{x,y\}\), the event \(\mathcal {F}_A\) is simply the event that x and y are connected to each other.

  11. 11.

    Meaning that these paths start and end in B, and each element in B appears exactly once in the set of beginning and ends of these paths.

  12. 12.

    Or more elegantly the use of Exercise 5, which states that \(\phi ^0_{p,2}[\omega _{xy}]=p\cdot \mu ^\mathrm{f}_{\beta }[\sigma _x=\sigma _y]\), which combined with \(\mu ^\mathrm{f}_{\beta }[\sigma _x=\sigma _y]=2\mu ^\mathrm{f}_{\beta }[\sigma _x\sigma _y]-1=2\phi ^0_{p,2}[x\leftrightarrow y]-1\) gives the requested equality.

  13. 13.

    Note that they are not equal to the mix boundary conditions since \(\gamma \) and \(\gamma '\) are wired together.

  14. 14.

    i.e. a path of edges starting and ending at the same point.

  15. 15.

    Let us mention that there are other instances of parafermionic observables for the self-avoiding walk, see [9, 72]. We do not discuss this further here since our goal is to quickly move back to the random-cluster model.

  16. 16.

    The exploration path \(\gamma \) is considered as a loop and counts as 1 in \(\ell (\overline{\omega })\).

  17. 17.

    Fermions have half-integer spins while bosons have integer spins, there are no particles with fractional spin, but the use of such fractional spins at a theoretical level has been very fruitful in physics.

  18. 18.

    We did not prove that P4b implies P5, but since P4a implies P4b and P5, this follows readily.

  19. 19.

    If it has “pinched” points, we add a tiny ball of size \(\varepsilon \ll \delta \). The very precise definition is not relevant here since the definition is a complicated way of phrasing an intuitive notion of convergence.

  20. 20.

    Let us mention crossing probabilities [15, 91], interfaces with different boundary conditions [35, 82], full family of interfaces [16, 94], the energy fields [81, 83]. The observable has also been used off criticality, see [12, 48].

  21. 21.

    Recall that here and below, we consider the convergence on every compact subset of \(\varvec{\Omega }\).

  22. 22.

    The proof of the existence of this map is not completely obvious and requires Schwarz’s reflection principle.

  23. 23.

    Again, one usually requires a few things about this function, but let us omit these technical conditions here.

  24. 24.

    Since Wick’s rule is equivalent to the fact that \(U_4(x_1,x_2,x_3,x_4)\) vanishes (see the definition in Exercise 35), this quantity is a measure of how non-Gaussian the field \((\sigma _x:x\in \mathbb Z^d)\) is.

References

  1. M. Aizenman. Geometric analysis of \(\varphi ^{4}\) fields and Ising models. I, II. Comm. Math. Phys., 86(1):1–48, 1982.

    Google Scholar 

  2. M. Aizenman and D. J. Barsky. Sharpness of the phase transition in percolation models. Comm. Math. Phys., 108(3):489–526, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman. Discontinuity of the magnetization in one-dimensional \(1/\vert x-y\vert ^2\) Ising and Potts models. J. Statist. Phys., 50(1-2):1–40, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Aizenman, H. Duminil-Copin, and V. Sidoravicius. Random Currents and Continuity of Ising Model’s Spontaneous Magnetization. Communications in Mathematical Physics, 334:719–742, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Aizenman and Roberto Fernández. On the critical behavior of the magnetization in high-dimensional Ising models. J. Statist. Phys., 44(3–4):393–454, 1986.

    Google Scholar 

  6. M. Aizenman, H. Kesten, and C. M. Newman. Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation. Comm. Math. Phys., 111(4):505–531, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. J. Barsky, G. R. Grimmett, and Charles M. Newman. Percolation in half-spaces: equality of critical densities and continuity of the percolation probability. Probab. Theory Related Fields, 90(1):111–148, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  8. Rodney J. Baxter. Exactly solved models in statistical mechanics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1989. Reprint of the 1982 original.

    Google Scholar 

  9. N. R. Beaton, M. Bousquet-Mélou, J. de Gier, H. Duminil-Copin, and A. J. Guttmann. The critical fugacity for surface adsorption of self-avoiding walks on the honeycomb lattice is \(1+\sqrt{2}\). Comm. Math. Phys., 326(3):727–754, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Beckner. Inequalities in fourier analysis. Ann. of Math, 102(1):159–182, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Beffara and H. Duminil-Copin. The self-dual point of the two-dimensional random-cluster model is critical for \(q\ge 1\). Probab. Theory Related Fields, 153(3-4):511–542, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Beffara and H. Duminil-Copin. Smirnov’s fermionic observable away from criticality. Ann. Probab., 40(6):2667–2689, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Beffara and H. Duminil-Copin. Lectures on planar percolation with a glimpse of Schramm Loewner Evolution. Probability Surveys, 10:1–50, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Benjamini, Russell Lyons, Y. Peres, and Oded Schramm. Critical percolation on any nonamenable group has no infinite clusters. Ann. Probab., 27(3):1347–1356, 1999.

    Google Scholar 

  15. S. Benoist, H. Duminil-Copin, and C. Hongler. Conformal invariance of crossing probabilities for the Ising model with free boundary conditions. Annales de l’Institut Henri Poincaré, 52(4):1784–1798, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Benoist and C. Hongler. The scaling limit of critical Ising interfaces is CLE(3). arXiv:1604.06975.

  17. V.L. Berezinskii. Destruction of long-range order in one-dimensional and two-dimensional systems possessing a continuous symmetry group. ii. quantum systems. Soviet Journal of Experimental and Theoretical Physics, 34:610, 1972.

    Google Scholar 

  18. Denis Bernard and André LeClair. Quantum group symmetries and nonlocal currents in \(2\)D QFT. Comm. Math. Phys., 142(1):99–138, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Biskup and L. Chayes. Rigorous analysis of discontinuous phase transitions via mean-field bounds. Comm. Math. Phys, (1):53–93, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  20. Marek Biskup. Reflection positivity and phase transitions in lattice spin models. In Methods of contemporary mathematical statistical physics, volume 1970 of Lecture Notes in Math., pages 1–86. Springer, Berlin, 2009.

    Google Scholar 

  21. Marek Biskup, Lincoln Chayes, and Nicholas Crawford. Mean-field driven first-order phase transitions in systems with long-range interactions. J. Stat. Phys., 122(6):1139–1193, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  22. Béla Bollobás. Random Graphs (2nd ed.). Cambridge University Press, 2001.

    Google Scholar 

  23. Béla Bollobás and Oliver Riordan. The critical probability for random Voronoi percolation in the plane is 1/2. Probab. Theory Related Fields, 136(3):417–468, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  24. Béla Bollobás and Oliver Riordan. A short proof of the Harris-Kesten theorem. Bull. London Math. Soc., 38(3):470–484, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  25. Béla Bollobás and Oliver Riordan. Percolation on self-dual polygon configurations. In An irregular mind, volume 21 of Bolyai Soc. Math. Stud., pages 131–217. János Bolyai Math. Soc., Budapest, 2010.

    Google Scholar 

  26. A. Bonami. Etude des coefficients de Fourier des fonctions de \({L}^p({G})\). Ann. Inst. Fourier, 20(2):335–402, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  27. Jean Bourgain, Jeff Kahn, Gil Kalai, Yitzhak Katznelson, and Nathan Linial. The influence of variables in product spaces. Israel J. Math., 77(1-2):55–64, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  28. S. R. Broadbent and J. M. Hammersley. Percolation processes. I. Crystals and mazes. Proc. Cambridge Philos. Soc., 53:629–641, 1957.

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Brydges, and T. Spencer. Self-avoiding walk in \(5\) or more dimensions. Comm. Math. Phys., 97(1–2):125–148, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  30. Theodore W. Burkhardt and Ihnsouk Guim. Bulk, surface, and interface properties of the Ising model and conformal invariance. Phys. Rev. B (3), 36(4):2080–2083, 1987.

    Article  MathSciNet  Google Scholar 

  31. R. M. Burton and M. Keane. Density and uniqueness in percolation. Comm. Math. Phys., 121(3):501–505, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Cardy. Discrete Holomorphicity at Two-Dimensional Critical Points. Journal of Statistical Physics, 137:814–824, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Chelkak, D. Cimasoni, and A. Kassel. Revisiting the combinatorics of the 2D Ising model. Ann. Inst. Henri Poincaré D, 4(3):309–385, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  34. D. Chelkak, H. Duminil-Copin, and C. Hongler. Crossing probabilities in topological rectangles for the critical planar FK-Ising model. Electron. J. Probab, 5:28pp, 2016.

    Google Scholar 

  35. D. Chelkak, H. Duminil-Copin, C. Hongler, A. Kemppainen, and S. Smirnov. Convergence of Ising interfaces to Schramm’s SLE curves. C. R. Acad. Sci. Paris Math., 352(2):157–161, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  36. Dmitry Chelkak, Clément Hongler, and Konstantin Izyurov. Conformal invariance of spin correlations in the planar Ising model. Ann. of Math. (2), 181(3):1087–1138, 2015.

    Google Scholar 

  37. Dmitry Chelkak and Stanislav Smirnov. Discrete complex analysis on isoradial graphs. Adv. Math., 228(3):1590–1630, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  38. Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math., 189(3):515–580, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  39. D. Cimasoni and H. Duminil-Copin. The critical temperature for the Ising model on planar doubly periodic graphs. Electron. J. Probab, 18(44):1–18, 2013.

    MathSciNet  MATH  Google Scholar 

  40. H. Duminil-Copin. Phase transition in random-cluster and O(n)-models. archive-ouverte.unige.ch/unige:18929, page 360 p, 2011.

    Google Scholar 

  41. H. Duminil-Copin. Divergence of the correlation length for critical planar FK percolation with \(1\le q\le 4\) via parafermionic observables. Journal of Physics A: Mathematical and Theoretical, 45(49):494013, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  42. H. Duminil-Copin. Parafermionic observables and their applications to planar statistical physics models, volume 25 of Ensaios Matematicos. Brazilian Mathematical Society, 2013.

    Google Scholar 

  43. H. Duminil-Copin. Geometric representations of lattice spin models. book, Edition Spartacus, 2015.

    Google Scholar 

  44. H. Duminil-Copin. A proof of first order phase transition for the planar random-cluster and Potts models with \(q\gg 1\). Proceedings of Stochastic Analysis on Large Scale Interacting Systems in RIMS kokyuroku Besssatu, 2016.

    Google Scholar 

  45. H. Duminil-Copin. Random currents expansion of the Ising model. arXiv:1607:06933, 2016.

  46. H. Duminil-Copin, M. Gagnebin, M. Harel, I. Manolescu, and V. Tassion. The Bethe ansatz for the six-vertex and XXZ models: an exposition. arXiv preprint arXiv:1611.09909, 2016.

  47. H. Duminil-Copin, M. Gagnebin, M. Harel, I. Manolescu, and V. Tassion. Discontinuity of the phase transition for the planar random-cluster and Potts models with \( q> 4\). arXiv preprint arXiv:1611.09877, 2016.

  48. H. Duminil-Copin, C. Garban, and G. Pete. The near-critical planar FK-Ising model. Comm. Math. Phys., 326(1):1–35, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  49. H. Duminil-Copin, C. Hongler, and P. Nolin. Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model. Comm. Pure Appl. Math., 64(9):1165–1198, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  50. H. Duminil-Copin and I. Manolescu. The phase transitions of the planar random-cluster and Potts models with \(q\ge 1\) are sharp. Probability Theory and Related Fields, 164(3):865–892, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  51. H. Duminil-Copin, R. Peled, W. Samotij, and Y. Spinka. Exponential decay of loop lengths in the loop \(O(n)\) model with large \(n\). Communications in Mathematical Physics, 349(3):777–817, 12 2017.

    Google Scholar 

  52. H. Duminil-Copin, A. Raoufi, and V. Tassion. A new computation of the critical point for the planar random-cluster model with \(q\ge 1\). arXiv:1604.03702, 2016.

  53. H. Duminil-Copin, A. Raoufi, and V. Tassion. Exponential decay of connection probabilities for subcritical Voronoi percolation in \(\mathbb{R}^{d}\). arXiv:1705.07978, 2017.

  54. H. Duminil-Copin, A. Raoufi, and V. Tassion. Sharp phase transition for the random-cluster and Potts models via decision trees. arXiv:1705.03104, 2017.

  55. H. Duminil-Copin, A. Raoufi, and V. Tassion. Subcritical phase of \(d\)-dimensional Poisson-boolean percolation and its vacant set. in preparation, 2017.

    Google Scholar 

  56. H. Duminil-Copin, V. Sidoravicius, and V. Tassion. Absence of infinite cluster for critical Bernoulli percolation on slabs. Communications in Pure and Applied Mathematics, 69(7):1397–1411, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  57. H. Duminil-Copin, V. Sidoravicius, and V. Tassion. Continuity of the phase transition for planar random-cluster and Potts models with \(1\le q\le 4\). Communications in Mathematical Physics, 349(1):47–107, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  58. H. Duminil-Copin and S. Smirnov. Conformal invariance of lattice models. In Probability and statistical physics in two and more dimensions, volume 15 of Clay Math. Proc., pages 213–276. Amer. Math. Soc., Providence, RI, 2012.

    Google Scholar 

  59. H. Duminil-Copin and S. Smirnov. The connective constant of the honeycomb lattice equals \(\sqrt{2+\sqrt{2}}\). Ann. of Math. (2), 175(3):1653–1665, 2012.

    Google Scholar 

  60. H. Duminil-Copin and V. Tassion. RSW and Box-Crossing Property for Planar Percolation. IAMP proceedings, 2015.

    Google Scholar 

  61. H. Duminil-Copin and V. Tassion. A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. Communications in Mathematical Physics, 343(2):725–745, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  62. H. Duminil-Copin and V. Tassion. A new proof of the sharpness of the phase transition for Bernoulli percolation on \(\mathbb{Z}^d\). Enseignement Mathématique, 62(1-2):199–206, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  63. P. Erdős and A. Rényi. On random graphs i. Publicationes Mathematicae, 6:290–297, 1959.

    MathSciNet  MATH  Google Scholar 

  64. R. Fitzner and R. van der Hofstad. Mean-field behavior for nearest-neighbor percolation in \(d>10\). Electron. J. Probab., 22(43) 65 pp, 2017.

    Google Scholar 

  65. C. M. Fortuin and P. W. Kasteleyn. On the random-cluster model. I. Introduction and relation to other models. Physica, 57:536–564, 1972.

    Article  MathSciNet  Google Scholar 

  66. Eduardo Fradkin and Leo P Kadanoff. Disorder variables and para-fermions in two-dimensional statistical mechanics. Nuclear Physics B, 170(1):1–15, 1980.

    Article  Google Scholar 

  67. S. Friedli and Y. Velenik. Statistical Mechanics of Lattice Systems: a Concrete Mathematical Introduction. Cambridge University Press, 2017.

    Google Scholar 

  68. J. Fröhlich. On the triviality of \(\lambda \phi ^4\) theories and the approach to the critical point in \(d \ge 4\) dimensions. Nuclear Physics B, 200(2):281–296, 1982.

    Article  MathSciNet  Google Scholar 

  69. J. Fröhlich, B. Simon, and Thomas Spencer. Infrared bounds, phase transitions and continuous symmetry breaking. Comm. Math. Phys., 50(1):79–95, 1976.

    Article  MathSciNet  Google Scholar 

  70. Jürg Fröhlich and Thomas Spencer. The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the Coulomb gas. Comm. Math. Phys., 81(4):527–602, 1981.

    Article  MathSciNet  Google Scholar 

  71. Hans-Otto Georgii. Gibbs measures and phase transitions, volume 9 of de Gruyter Studies in Mathematics. Walter de Gruyter and Co., Berlin, second edition, 2011.

    Google Scholar 

  72. A. Glazman. Connective constant for a weighted self-avoiding walk on \({\mathbb{Z}^{2}}\). Electron. Commun. Probab., 20(86):1–13, 2015.

    Google Scholar 

  73. T. Gobron and I. Merola. First-order phase transition in Potts models with finite-range interactions. Journal of Statistical Physics, 126(3):507–583, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  74. B. T. Graham and G. R. Grimmett. Influence and sharp-threshold theorems for monotonic measures. Ann. Probab., 34(5):1726–1745, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  75. Robert B. Griffiths, C. A. Hurst, and S. Sherman. Concavity of magnetization of an Ising ferromagnet in a positive external field. J. Mathematical Phys., 11:790–795, 1970.

    Google Scholar 

  76. G. Grimmett. Percolation, volume 321 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1999.

    Google Scholar 

  77. G. Grimmett. The random-cluster model, volume 333 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2006.

    Google Scholar 

  78. G. R. Grimmett. Inequalities and entanglements for percolation and random-cluster models. In Perplexing problems in probability, volume 44 of Progr. Probab., pages 91–105. Birkhäuser Boston, Boston, MA, 1999.

    Google Scholar 

  79. J. M. Hammersley and D. J. A. Welsh. Further results on the rate of convergence to the connective constant of the hypercubical lattice. Quart. J. Math. Oxford Ser. (2), 13:108–110, 1962.

    Article  MathSciNet  MATH  Google Scholar 

  80. Takashi Hara and Gordon Slade. Mean-field critical behaviour for percolation in high dimensions. Comm. Math. Phys., 128(2):333–391, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  81. C. Hongler. Conformal invariance of Ising model correlations. PhD thesis, université de Genève, 2010.

    Google Scholar 

  82. Clément Hongler and Kalle Kytölä. Ising interfaces and free boundary conditions. J. Amer. Math. Soc., 26(4):1107–1189, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  83. Clément Hongler and Stanislav Smirnov. The energy density in the planar Ising model. Acta Math., 211(2):191–225, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  84. Tom Hutchcroft. Critical percolation on any quasi-transitive graph of exponential growth has no infinite clusters. Comptes Rendus Mathematique, 354(9):944–947, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  85. Y. Ikhlef and J.L. Cardy. Discretely holomorphic parafermions and integrable loop models. J. Phys. A, 42(10):102001, 11, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  86. Y. Ikhlef, R. Weston, M. Wheeler, and P. Zinn-Justin. Discrete holomorphicity and quantized affine algebras. arxiv:1302.4649, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  87. D. Ioffe, S. Shlosman, and Y. Velenik. 2D models of statistical physics with continuous symmetry: the case of singular interactions. Comm. Math. Phys., 226(2):433–454, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  88. R.P. Isaacs. Monodiffric functions. Construction and applications of conformal maps. In Proceedings of a symposium, National Bureau of Standards, Appl. Math. Ser., No. 18, pages 257–266, Washington, D. C., 1952. U. S. Government Printing Office.

    Google Scholar 

  89. Rufus Philip Isaacs. A finite difference function theory. Univ. Nac. Tucumán. Revista A., 2:177–201, 1941.

    MathSciNet  MATH  Google Scholar 

  90. E. Ising. Beitrag zur Theorie des Ferromagnetismus. Z. Phys., 31:253–258, 1925.

    Article  Google Scholar 

  91. K. Izyurov. Smirnov’s observable for free boundary conditions, interfaces and crossing probabilities. Communications in Mathematical Physics, 337(1):225–252, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  92. Joel L. Lebowitz and Anders Martin Löf. On the uniqueness of the equilibrium state for Ising spin systems. Comm. Math. Phys., 25:276–282, 1972.

    Google Scholar 

  93. J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean functions. In 29th Annual Symposium on Foundations of Computer Science, pages 68–80, 1988.

    Google Scholar 

  94. A Kemppainen and S. Smirnov. Conformal invariance in random cluster models. ii. full scaling limit as a branching sle. arXiv:1609.08527.

  95. Antti Kemppainen and Stanislav Smirnov. Random curves, scaling limits and loewner evolutions. arXiv:1212.6215, 2012.

  96. H. Kesten. The critical probability of bond percolation on the square lattice equals \({1\over 2}\). Comm. Math. Phys., 74(1):41–59, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  97. JM Kosterlitz and DJ Thouless. Ordering, metastability and phase transitions in two-dimensional systems. Journal of Physics C: Solid State Physics, 6(7):1181–1203, 1973.

    Article  Google Scholar 

  98. R. Kotecký and S. B. Shlosman. First-order phase transitions in large entropy lattice models. Comm. Math. Phys., 83(4):493–515, 1982.

    Article  MathSciNet  Google Scholar 

  99. Gregory F. Lawler. Conformally invariant processes in the plane, volume 114 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005.

    Google Scholar 

  100. W. Lenz. Beitrag zum Verständnis der magnetischen Eigenschaften in festen Körpern. Phys. Zeitschr., 21:613–615, 1920.

    Google Scholar 

  101. M. Lis. The fermionic observable in the Ising model and the inverse Kac-Ward operator. Annales Henri Poincaré, 15(10):1945–1965, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  102. M. Lis. A short proof of the Kac-Ward formula. Ann. Inst. Henri Poincaré Comb. Phys. Interact., 3:45–53, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  103. B. M. McCoy and T. T. Wu. Ising model correlation functions: difference equations and applications to gauge theory. In Nonlinear integrable systems—classical theory and quantum theory (Kyoto, 1981), pages 121–134. World Sci. Publishing, Singapore, 1983.

    Google Scholar 

  104. M. V. Menshikov. Coincidence of critical points in percolation problems. Dokl. Akad. Nauk SSSR, 288(6):1308–1311, 1986.

    MathSciNet  Google Scholar 

  105. N.D. Mermin and H. Wagner. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic heisenberg models. Phys. Rev. Lett., 17:1133–1136, 1966.

    Article  Google Scholar 

  106. A. Messager and S. Miracle-Sole. Correlation functions and boundary conditions in the ising ferromagnet. Journal of Statistical Physics, 17(4):245–262, 1977.

    Article  MathSciNet  Google Scholar 

  107. B. Nienhuis. Coulomb gas description of 2D critical behaviour. J. Statist. Phys., 34:731–761, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  108. Bernard Nienhuis. Exact Critical Point and Critical Exponents of \(\rm O(n)\) Models in Two Dimensions. Physical Review Letters, 49(15):1062–1065, 1982.

    Article  MathSciNet  Google Scholar 

  109. R. O’Donnell, M. Saks, O. Schramm, and R. Servedio. Every decision tree has an influential variable. FOCS, 2005.

    Google Scholar 

  110. A Polyakov. Interaction of goldstone particles in two dimensions. Applications to ferromagnets and massive Yang-Mills fields. Physics Letters B, 59(1):79–81, 1975.

    Article  Google Scholar 

  111. Renfrey Burnard Potts. Some generalized order-disorder transformations. In Proceedings of the Cambridge Philosophical Society, volume 48(2), pages 106–109. Cambridge Univ Press, 1952.

    Google Scholar 

  112. M. A. Rajabpour and J.L. Cardy. Discretely holomorphic parafermions in lattice \(Z_N\) models. J. Phys. A, 40(49):14703–14713, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  113. N. Reshetikhin. Lectures on the integrability of the 6-vertex model. arXiv1010.5031, 2010.

    Google Scholar 

  114. V. Riva and J. Cardy. Holomorphic parafermions in the Potts model and stochastic Loewner evolution. J. Stat. Mech. Theory Exp., (12):P12001, 19 pp. (electronic), 2006.

    Article  MathSciNet  MATH  Google Scholar 

  115. L. Russo. A note on percolation. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 43(1):39–48, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  116. El-Showk S., Paulos M. F., Poland D., Rychkov S., Simmons-Duffin D., and Vichi A. Solving the 3d Ising model with the conformal bootstrap. Physical Review D, 86(2), 2012.

    Google Scholar 

  117. Oded Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math., 118:221–288, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  118. P. D. Seymour and D. J. A. Welsh. Percolation probabilities on the square lattice. Ann. Discrete Math., 3:227–245, 1978. Advances in graph theory (Cambridge Combinatorial Conf., Trinity College, Cambridge, 1977).

    Google Scholar 

  119. Stanislav Smirnov. Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math., 333(3):239–244, 2001.

    Google Scholar 

  120. Stanislav Smirnov. Towards conformal invariance of 2D lattice models. In International Congress of Mathematicians. Vol. II, pages 1421–1451. Eur. Math. Soc., Zürich, 2006.

    Google Scholar 

  121. Stanislav Smirnov. Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. of Math. (2), 172(2):1435–1467, 2010.

    Google Scholar 

  122. H.E. Stanley. Dependence of critical properties on dimensionality of spins. Physical Review Letters, 20(12):589–592, 1968.

    Article  Google Scholar 

  123. M. Talagrand. On Russo’s approximate zero-one law. Ann. Probab., 22(3):1576–1587, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  124. Vincent Tassion. Planarité et localité en percolation. PhD thesis, ENS Lyon, 2014.

    Google Scholar 

  125. Vincent Tassion. Crossing probabilities for Voronoi percolation. Annals of Probability, 44(5):3385–3398, 2016. arXiv:1410.6773.

    Article  MathSciNet  MATH  Google Scholar 

  126. B. L. van der Waerden. Die lange Reichweite der regelmassigen Atomanordnung in Mischkristallen. Z. Physik, 118:473–488, 1941.

    Article  MATH  Google Scholar 

  127. Wendelin Werner. Lectures on two-dimensional critical percolation. In Statistical mechanics, volume 16 of IAS/Park City Math. Ser., pages 297–360. Amer. Math. Soc., Providence, RI, 2009.

    Google Scholar 

  128. A. C. Yao. Probabilistic computations: Toward a unified measure of complexity. In Foundations of Computer Science, 1977., 18th Annual Symposium on, pages 222–227. IEEE, 1977.

    Google Scholar 

Download references

Acknowledgements

This research was funded by an IDEX Chair from Paris Saclay and by the NCCR SwissMap from the Swiss NSF. These lecture notes describe the content of a class given at the PIMS-CRM probability summer school on the behavior of lattice spin models near their critical point. The author would like to thank the organizers warmly for offering him the opportunity to give this course. Also, special thanks to people who sent comments to me, especially Timo Hirscher and Franco Severo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Duminil-Copin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duminil-Copin, H. (2020). Lectures on the Ising and Potts Models on the Hypercubic Lattice. In: Barlow, M., Slade, G. (eds) Random Graphs, Phase Transitions, and the Gaussian Free Field. SSPROB 2017. Springer Proceedings in Mathematics & Statistics, vol 304. Springer, Cham. https://doi.org/10.1007/978-3-030-32011-9_2

Download citation

Publish with us

Policies and ethics