Skip to main content
Log in

Cytochemical localization by ferricyanide reduction of α-hydroxy acid oxidase activity in peroxisomes of rat kidney

  • Published:
Histochemie Aims and scope Submit manuscript

Summary

Conditions are described for the use of ferricyanide as an electron acceptor for the cytochemical demonstration by light and electron microscopy of mammalian L-α-hydroxy acid oxidase activity in peroxisomes of rat kidney. Enzyme activity survives brief fixation in cold formaldehyde or in Karnovsky's fixative. Cytochemical localization of α-hydroxy acid oxidase activity in cryostat sections, or in finely chopped tissue blocks, is based on a simulaneous coupling reaction, in which ferrocyanide (produced by the enzymatic reduction of ferricyanide) is captured by copper to yield an insoluble, amorphous, electron-opaque deposit of cupric ferrocyanide (Hatchett's Brown). Under cytochemical conditions, the enzyme is most active in the presence of D,L-α-hydroxy butyric acid. The staining reaction requires the presence of substrate, and is abolished by heat treatment of sections. The use of rubeanic acid (dithiooxamide) is recommended for the visualization of the copper-containing reaction product by light microscopy. The cytochemical localization obtained is specific for peroxisomes located in cells of the proximal tubule of the rat nephron. By light microscopy, renal peroxisomes can be distinguished from lysosomes and mitochondria on the basis of their size, shape, number, and intracellular distribution. At an ultrastructural level, amorphous, electronopaque cupric ferrocyanide reaction product is precisely localized to the nucleoid and peripheral portion of the matrix of the peroxisome in lightly stained areas, and throughout the organelle, where staining is more intense. Staining results with the ferricyanide method for L-α-hydroxy acid oxidase, reported herein, are compared with those obtainable with the tetrazolium technic developed by Alien and Beard for the same enzyme, and with the 3,3′-diamino-benzidine (DAB) method for catalase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afzelius, B. A.: The occurrence and structure of microbodies. A comparative study. J. Cell Biol. 26, 835–843 (1965).

    Google Scholar 

  • Allen, J. M., Beard, M. E.: α-hydroxy acid oxidase: Localization in renal microbodies. Science 149, 1507–1509 (1965a).

    Google Scholar 

  • — —, Kleinbergs, S.: The localization of α-hydroxy acid in renal microbodies. J. exp. Zool. 160, 329–344 (1965b).

    Google Scholar 

  • Baudhuin, P., Beaufay, H., de Duve, C.: Combined biochemical and morphological study of particulate fractions from rat liver. Analysis of preparation enriched in lysosomes or in particles containing urate oxidase, D-amino acid oxidase, and catalase. J. Cell Biol. 26, 219–243 (1965a).

    Google Scholar 

  • —, Müller, M., Poole, B., de Duve, C.: Non-mitochondrial oxidizing particles (microbodies) in rat liver and kidney and in Tetrahymena pyriformis. Biochem. biophys. Res. Commun. 20, 53–59 (1965b).

    Google Scholar 

  • Beard, M. E., Novikoff, A. B.: Distribution of peroxisomes (microbodies) in the nephron of the rat. A cytochemical study. J. Cell Biol. 42, 501–518 (1969).

    Google Scholar 

  • Beasley, M. L., Milligan, W. O.: The structure and morphology of cupric ferrocyanide gels. Trans. N. Y. Acad. Sci., Ser. II, 31, 261–279 (1969).

    Google Scholar 

  • Blanchard, M., Green, D. E., Nocito, V., Ratner, S.: L-amino acid oxidase of animal tissue. J. biol. Chem. 155, 421–440 (1944).

    Google Scholar 

  • — —, Nocito-Carroll, V., Ratner, S.: L-hydroxy acid oxidase. J. biol. Chem. 163, 137–144 (1946).

    Google Scholar 

  • Castellano, M. A., Germino, N. I., Berois de Haro, N., Gerard, G.: Histochemical demonstration of L-amino acid-tetrazolium reductase. Histochemie 18, 277–280 (1969).

    Google Scholar 

  • Caulfield, J. B.: Effects of varying the vehicle for OsO4 in tissue fixation. J. biophys. biochem. Cytol. 3, 827–830 (1957).

    Google Scholar 

  • Connelly, J. L., Danner, D. J., Bowden, J. A.: Branched chain α-keto acid metabolism. I. Isolation, purification, and partial characterization of bovine liver α-keto-isocaproic: α-keto-β-methylvaleric acid dehydrogenase. J. biol. Chem. 243, 1198–1203 (1968).

    Google Scholar 

  • Dixon, M.: The acceptor specificity of flavins and flavoproteins. III. Flavoproteins. Biochim. biophys. Aeta (Amst.) 226, 269–284 (1971).

    Google Scholar 

  • Domenech, C. E., Blanco, A.: α-hydroxy acid oxidases in subcellular fractions from rat kidney. Biochem. biophys. Res. Commun. 28, 209–214 (1967).

    Google Scholar 

  • de Duve, C., Baudhuin, P.: Peroxisomes (microbodies and related particles). Physiol. Rev. 46, 323–357 (1966).

    Google Scholar 

  • —: The peroxisome: A new cytoplasmic organelle. Proc. roy. Soc. B 173, 71–83 (1969).

    Google Scholar 

  • Eichel, H. J.: The oxidation of L-α-hydroxy acids by Tetrahymena pyriformis. Abstr. 6th Intern. Congr. Biochem., New York, p. 305 (1964).

  • —: Oxidation of L-α-hydroxy acids by Tetrahymena pyriformis. Biochim. biophys. Acta (Amst.) 128, 183–186 (1966).

    Google Scholar 

  • Ekés, M.: Electron-mieroscopic-histochemical demonstration of succinic-dehydrogenase activity in root cells of yellow lupine. Planta (Berl.) 94, 37–46 (1970).

    Google Scholar 

  • Ericsson, J. L. E.: Absorption and decomposition of homologous hemoglobin in renal proximal tubular cells. An experimental light and electron microscopic study. Thesis. Acta path, microbiol. scand., Suppl. 168, 7–121 (1964).

    Google Scholar 

  • —, Biberfeld, P.: Studies on aldehyde fixation. Fixation rates and their relation to fine structure and some histochemical reactions in liver. Lab. Invest. 17, 281–298 (1967).

    Google Scholar 

  • —, Trump, B. F.: Electron microscopic studies of the epithelium of the proximal tubule of the rat kidney. III. Microbodies, multivesicular bodies and the Golgi apparatus. Lab. Invest. 15, 1610–1633 (1966).

    Google Scholar 

  • Estabrook, R. W.: Studies of oxidative phosphorylation with potassium ferricyanide as electron acceptor. J. biol. Chem. 236, 3051–3057 (1961).

    Google Scholar 

  • Fahimi, H. D.: Cytochemical localization of peroxidase activity in rat hepatic microbodies (peroxisomes). J. Histochem. Cytochem. 16, 547–550 (1968).

    Google Scholar 

  • —: Cytochemical localization of peroxidatic activity of catalase in rat hepatic microbodies (peroxisomes). J. Cell Biol. 43, 275–288 (1969).

    Google Scholar 

  • Fahmy, A.: An extemporaneous lead citrate stain for electron microscopy. In: Proceedings, Twenty-Fifth Anniversary Meeting, Electron Microscopy Society of America, 1967 (C. J. Arceneaux, ed.), p. 148–149. Baton Rouge. Louisiana: Claitor's Book Store 1967.

    Google Scholar 

  • Feigl, F.: Spot tests in inorganic analysis, 5. ed. (Translated by R. E. Oesper), p. 88. New York: Elsevier Publishing Co. 1958.

    Google Scholar 

  • Frederick, S. E., Newcomb, E. H.: Cytochemical localization of catalase in leaf microbodies (peroxisomes). J. Cell Biol. 43, 343–353 (1969).

    Google Scholar 

  • Gander, E. S., Moppert, J. M.: Der Einfluß von Dimethylsulfoxid auf die Permeabilität der Lysosomenmembran bei quantitativer und qualitativer Darstellung der sauren Phosphatase. Histochemie 20, 211–214 (1969).

    Google Scholar 

  • Graham, R. C., Jr., Karnovsky, M. J.: The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem. 14, 291–302 (1966).

    Google Scholar 

  • Hirai, K.-I.: Specific affinity of oxidized amine dye (radical intermediate) for heme enzymes: Study in microscopy and spectrophotometry. Acta histochem. cytochem. 1, 43–55 (1968).

    Google Scholar 

  • —: Light microscopic study of the peroxidatic activity of catalase in formaldehyde-fixed rat liver. J. Histochem. Cytochem. 17, 585–590 (1969).

    Google Scholar 

  • Hruban, Z., Rechcigl, M., Jr.: Microbodies and related particles: Morphology, biochemistry, and physiology. International Review of Cytology, Suppl. 1. New York: Academic Press 1969.

    Google Scholar 

  • Jacobsen, N. O.: The histochemical localization of lactic dehydrogenase isoenzymes in the rat nephron by means of an improved poly vinyl alcohol method. Histochemie 20, 250–265 (1969).

    Google Scholar 

  • Kalina, M., Weavers, B., Pearse, A. G. E.: Ultrastructural localization of succinate dehydrogenase in mouse liver mitochondria; A Cytochemical study. J. Histochem. Cytochem. 19, 124–130 (1971).

    Google Scholar 

  • Karnovsky, M. J.: The localization of cholinesterase activity in rat cardiac muscle by electron microscopy. J. Cell Biol. 23, 217–232 (1964b).

    Google Scholar 

  • —, Roots, L.: A “direct-coloring” thiocholine method for cholinesterases. J. Histochem. Cytochem. 12, 219–221 (1964a).

    Google Scholar 

  • Kerpel-Fronius, S., Hajós, F.: The use of ferricyanide for the light and electron microscopic demonstration of succinic dehydrogenase activity. Histochemie 14, 343–351 (1968).

    Google Scholar 

  • Klingenberg, M.: The respiratory chain. In: Biological oxidations. (T. P. Singer, ed.), p. 3–53. New York: Interscience Publishers Inc., 1968.

    Google Scholar 

  • Kuhn, C.: Particles resembling microbodies in normal and neoplastic perianal glands of dogs. Z. Zellforsch. 90, 554–562 (1968).

    Google Scholar 

  • Langer, K. H.: Feinstrukturen der Mikrokörper (Microbodies) des proximalen Nierentubulus. Z. Zellforsch. 90, 432–446 (1968).

    Google Scholar 

  • Levy, M. R., Hunt, A. E.: L-α-hydroxy acid oxidase activity in Tetrahymena; change with physiological state. J. Cell Biol. 34, 911–915 (1967).

    Google Scholar 

  • —, Wasmuth, J. J.: Effects of carbohydrate on glycolytic and peroxisomal enzymes in Tetrahymena. Biochim. biophys. Acta 201, 205–214 (1970).

    Google Scholar 

  • Lindquist, R. R.: Studies on the pathogenesis of hepatolenticular degeneration. II. Cytochemical methods for the localization of copper. Arch. Path. 87, 370–379 (1969)

    Google Scholar 

  • Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961).

    Google Scholar 

  • Mann, P. J. G., Woodward, H. E., Quastel, J. H.: Hepatic oxidation of choline and arsenocholine. Biochem. J. 32, 1024–1032 (1938).

    Google Scholar 

  • Marcus, A., Feeley, J.: The effect of phenazine methosulfate and pyocyanine on the L-amino acid oxidase reaction. Biochim. biophys. Acta (Amst.) 59, 398–407 (1962).

    Google Scholar 

  • Massey, V., Müller, F., Feldberg, R., Schuman, M., Sullivan, P. A., Howell, L. G., Mayhew, S. G., Matthews, R. G., Foust, G. P.: The reactivity of flavoproteins with sulfite. Possible relevance to the problem of oxygen reactivity. J. biol. Chem. 244, 3999–4006 (1969).

    Google Scholar 

  • Maunsbach, A. B.: Observations of the segmentation of the proximal tubule in the rat kidney. Comparison of results from phase contrast, fluorescence, and electron microscopy. J. Ultrastruct. Res. 16, 239–258 (1966).

    Google Scholar 

  • Müller, M., Hogg, J. F., de Duve, C.: Distribution of tricarboxylic acid cycle enzymes and glyoxylate cycle enzymes between mitochondria and peroxisomes in Tetrahymena pyriformis. J. biol. Chem. 243, 5385–5395 (1968).

    Google Scholar 

  • Nakano, M., Danowski, T. S.: Crystalline mammalian L-amino acid oxidase from rat kidney mitochondria. J. biol. Chem. 241, 2075–2083 (1966).

    Google Scholar 

  • —, Saga, M., Tsutsumi, Y.: Distribution and immunochemical properties of rat kidney L-amino acid oxidase, with a note on peroxisomes. Biochim. biophys. Acta (Amst.) 185, 19–30 (1969).

    Google Scholar 

  • —, Tarutani, O., Danowski, T. S.: Molecular weight of mammalian L-amino-acid oxidase from rat kidney. Biochim. biophys. Acta (Amst.) 168, 156–157 (1968b).

    Google Scholar 

  • —, Tsutsumi, Y., Danowski, T. S.: Crystalline L-amino acid oxidase from the soluble fraction of rat-kidney cells. Biochim. biophys. Acta (Amst.) 139, 40–48 (1967).

    Google Scholar 

  • —, Ushijima, Y., Saga, M., Tsutsumi, Y., Asami, H.: Aliphatic L-α-hydroxy acid oxidase from rat livers. Purification and properties. Biochim. biophys. Acta (Amst.) 167, 9–22 (1968a).

    Google Scholar 

  • Novikoff, A. B., Goldfischer, S.: Visualization of microbodies for light and electron microscopy. Abstract. J. Histochem. Cytochem. 16, 507 (1968).

    Google Scholar 

  • — —: Visualization of peroxisomes (microbodies) and mitochondria with diaminobenzidine. J. Histochem Cytomchem. 17, 675–680 (1969).

    Google Scholar 

  • Ogawa, K., Saito, T., Mayahara, H.: Ultrastructural localization of succinic dehydrogenase in mitochondria. In: Electron Microscopy 1966 (R. Uyeda, ed.). Tokyo: Maruzen Company, Ltd. 1966. Vol. II. p. 105.

    Google Scholar 

  • — —: The site of ferricyanide reduction by reductase within mitochondria as studied by electron microscopy. J. Histochem. Cytochem. 16, 49–57 (1968).

    Google Scholar 

  • Quastel, J. H., Wheatley, A. H. M.: Anaerobic oxidations. On ferricyanide as a reagent for the manometric investigations of dehydrogenase systems. Biochem. J. 32, 936–943 (1938).

    Google Scholar 

  • Rhodin, J.: Correlation of ultrastructural organization and function in normal and experimentally changed proximal convoluted tubule cells of mouse kidney. Thesis, p. 1–76. Stockholm, Sweden: Aktiebolaget Godvil 1954.

    Google Scholar 

  • Robinson, J. C., Keay, L., Molinari, R., Sizer, I. W.: L-α-hydroxy acid oxidases of hog renal cortex. J. biol. Chem. 237, 2001–2010 (1962).

    Google Scholar 

  • Saga, M., Tsutsumi, Y., Nakano, M.: Localization of short and long chain L-α-hydroxy acid oxidases in peroxisomes of hog kidney. Biochim. biophys. Acta (Amst.) 184, 213–215 (1969).

    Google Scholar 

  • Salvatore, F., Zappia, V., Cortese, R.: Studies on the deamination of L-amino acids in mammalian tissues. Enzymologia 31, 8–127 (1966).

    Google Scholar 

  • Schuman, M., Massey, V.: Purification and characterization of glycolic acid oxidase from pig liver. Biochim. biophys. Acta (Amst.) 227, 500–520 (1971).

    Google Scholar 

  • Scott, P. J., Visen tin, L. P., Allen, J. M.: The enzymatic characteristics of peroxisomes of amphibian and avian liver and kidney. Ann. N. Y. Acad. Sci. 168, 244–264 (1969).

    Google Scholar 

  • Seligman, A. M., Karnovsky, M. J., Wasserkrug, H. L., Hanker, J. S.: Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB). J. Cell Biol. 38, 1–14 (1968).

    Google Scholar 

  • —, Seito, T., Plapinger, R. E.: Some cytochemical correlations between oxidase activity (cytochrome and peroxidase) and chemical structure of bis (phenylenediamines). Histochemie 22, 85–99 (1970).

    Google Scholar 

  • Shnitka, T. K.: Comparative ultrastructure of hepatic microbodies in some mammals and birds in relation to species differences in uricase activity. J. Ultrastruct. Res. 16, 598–625 (1966).

    Google Scholar 

  • —, Jewell, L. D., Youngman, M. M.: Personal communication. In: Microbodies and related particles: Morphology, biochemistry, and physiology. International Review of Cytology, Suppl. 1 (Z. Hruban and M. Rechcigl, Jr.), p. 12–13. New York: Academic Press, Inc., 1969.

    Google Scholar 

  • —, Youngman, M. M., Jewell, L. D.: Simple mechanical tissue chopper for the preparation of specimens for electron microscopy and ultrastructural cytochemistry. Lab. Pract. 17, 918–920 (1968).

    Google Scholar 

  • Singer, T. P., Kearney, E. B., Massey, V.: Newer knowledge of succinic dehydrogenase. In: Advances in enzymology, vol. 18, p. 65–110. New York: Interscience Publishers, Inc. 1957.

    Google Scholar 

  • Stempak, J. G., Ward, R. T.: An improved staining method for electron microscopy. J. Cell Biol. 22, 697–701 (1964).

    Google Scholar 

  • Stumpf, P. K., Zarudnaya, K., Green, D. E.: Pyruvic and α-ketoglutaric oxidase of animal tissue. J. biol. Chem. 167, 817–825 (1947).

    Google Scholar 

  • Tisher, C. C., Finkel, R. M., Rosen, S., Kendig, E. M.: Renal microbodies in the rhesus monkey. Lab. Invest. 19, 1–6 (1968).

    Google Scholar 

  • Tsukada, H., Mochizuki, Y., Fujiwara, S.: The nucleoids of rat liver cell microbodies. Fine structure and enzymes. J. Cell Biol. 28, 449–460 (1966).

    Google Scholar 

  • Ushijima, Y., Nakano, M.: Aliphatic L-α-hydroxy acidoxidase from rat liver. II. A flavoprotein. Biochim. biophys. Acta (Amst.) 178, 429–433 (1969).

    Google Scholar 

  • Uzman, L. L.: Histochemical localization of copper with rubeanic acid. Lab. Invest. 5, 299–305 (1956).

    Google Scholar 

  • Vigil, E. L.: Intracellular localization of catalase (peroxidatic) activity in plant microbodies. J. Histochem. Cytochem. 17, 425–428 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by grants MT-1273 and MT-1341 from the Medical Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shnitka, T.K., Talibi, G.G. Cytochemical localization by ferricyanide reduction of α-hydroxy acid oxidase activity in peroxisomes of rat kidney. Histochemie 27, 137–158 (1971). https://doi.org/10.1007/BF00284956

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00284956

Keywords

Navigation