Skip to main content
Log in

Examination of Antarctic prokaryotic diversity through molecular comparisons

  • Papers
  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Prokaryotes perform key functions in Antarctic ecosystems, and knowledge of the taxonomy of Antarctic prokaryotes is a prerequisite for the transfer of information between fields of scientific inquiry. The taxonomy of prokaryotes has been greatly revised and improved due to the refinements afforded by molecular techniques such as 16S rRNA sequencing. Past inventories of Antarctic microbial diversity are difficult to reconcile with the developing, phylogenetically-based taxonomy.

Antarctic prokaryotes are considerably diverse and most evolutionary groups are represented, including representatives of both Archaea and Bacteria. The diversity appears unique due to the ease with which new species can be isolated; however, that may be a result of our vastly incomplete knowledge of both Antarctic and non-Antarctic prokaryotic diversity. Use of the 16S rRNA gene as a molecular clock would suggest that the majority of Antarctic prokaryotes diverged from their nearest known non-Antarctic relatives long before a stable ice-sheet developed in Antarctica. The time of colonization (or recolonization) of Antarctic environments by individual species may have been very recent in evolutionary time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abyzov, S.S. (1993) Microorganisms in the Antaretic ice. In Antarctic Microbiology (E.I. Friedmann, ed.) pp. 265–95. New York: Wiley-Liss.

    Google Scholar 

  • Adamson, D.A. and Pickard, J. (1986) Cainozoic history of the Vestfold Hills. In Antarctic Oasis Terrestrial Environments and History of the Vestfold Hills (J. Pickard, ed.) pp. 63–97. Sydney: Academic Press.

    Google Scholar 

  • Barrett, P.J., Adams, C.J., McIntosh, W.C., Swisher, C.C. and Wilson, C.S. (1992) Geochronological evidence supporting Antarctic deglaciation three million years ago. Nature 359, 816–8.

    Google Scholar 

  • Bölter, M. (1992) Environmental conditions and microbiological properties from soils and lichens from Antarctica (Casey Station, Wilkes Land). Polar Biol. 11, 591–9.

    Google Scholar 

  • Cameron, R.E. (1971) Antarctic soil microbial and ecological investigations. In Research in the Antarctic (L.O. Quam ed.) pp. 137–89. Washington DC: American Academy of Arts and Sciences.

    Google Scholar 

  • Colwell, R.R. (1992) Biodiversity amongst microorganisms and its relevance. Biodiv. Conserv. 1, 342–5.

    Google Scholar 

  • Colwell, R.R., MacDonell, M.T. and Swartz, D. (1989) Identification of an Antarctic endolithic microorganism by 5S rRNA sequence analysis. System. Appl. Microbiol. 11, 182–6.

    Google Scholar 

  • De Ley, J. (1974) Phylogeny of procaryotes. Taxon 23, 291–300.

    Google Scholar 

  • DeLong, E.F., Wu, K.Y., Prezelin, B.B. and Jovine, R.V.M. (1994) High abundance of Archaea in Antarctic marine picoplankton. Nature 695-7.

  • Dobson, S.J., Colwell, R.R., Franzmann, P.D. and McMeekin, T.A. (1993) Direct sequencing of the PCR-amplified 16S rRNA gene of Flavobacterium gondwanense sp. nov. (ACAM 44T=DSM 5425T), and Flavobacterium salegens sp. nov. (ACAM 48T=DSM 5424T), new species from a hypersaline Antarctic lake. Int. J. Syst. Bact. 43, 77–83.

    Google Scholar 

  • Edwards, U., Rogall, T., Blöcker, H., Emde, M. and Böttger, E.C. (1989) Isolation and direct complete nucleotide determination of entire genes. Characterisation of a gene coding for 16S ribosomal genes. Nuc. Acid. Res. 17, 7843–53.

    Google Scholar 

  • Ellis-Evans, J.C. (1985) Microbial ecology in Antarctica. Biologist 32, 171–6.

    Google Scholar 

  • Felsenstein, J. (1989) PHYLIP-phylogeny inference package (version 3.2). Cladistics 5, 164–6.

    Google Scholar 

  • Fenchel, T. and Ramsing, N.B. (1992) Identification of sulphate-reducing ectosymbiotic bacteria from anaerobic ciliates using 16S rRNA binding oligonucleotide probes. Arch. Microbiol. 158 394–7.

    Google Scholar 

  • Fox, G.E., Stackebrandt, E., Hespell, R.B., Gibson, J., Maniloff, J., Dyer, T.A., Wolfe, R.S., Balch, W.E., Tanner, R., Magrum, L., Zabel, L.B., Blakemore, R., Gupta, R., Bonen, L., Lewis, B.J., Stahl, D.A., Leuhrsen, K.R., Chen, K.N. and Woese, C.R. (1980) The phylogeny of prokaryotes. Science 209, 457–63.

    Google Scholar 

  • Fox, G.E., Wisotzkey, J.D. and JurtshukJr., P. (1992) How close is close, 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42, 166–70.

    Google Scholar 

  • Franzmann, P.D., Stackebrandt, E., Sanderson, K., Volkman, J.K., Cameron, D.E., Stevenson, P.L., McMeekin, T.A. and Burton, H.R. (1988a) Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst. Appl. Microbiol. 11, 20–7.

    Google Scholar 

  • Franzmann, P.D., Wehmeyer, U. and Stackebrandt, E. (1988b) Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst. Appl. Microbiol. 11, 16–9.

    Google Scholar 

  • Franzmann, P.D., Deprez, P.P., McGuire, A.J., McMeekin, T.A. and Burton, H.R. (1990) The microbial ecology of Burton lake, Antarctica. Polar Biol. 10, 261–4.

    Google Scholar 

  • Gazdzicki, A., Gruszczynski, M., Hoffman, A., Malkowski, K., Marenssi, S.A., Halas, S. and Tatura, A. (1992) Stable carbon and oxygen isotope record in the Paleogene La Meseta formation, Seymour Island, Antarctica. Anarct. Sci. 4, 461–8.

    Google Scholar 

  • Greenfield, L. (1983) Thermophilic fungi and actinomycetes from Mt Erebus and a fungus pathogenic to Bryum antarcticum at Cape Bird. New Zealand. Antarct. Rec. 4, 10–1.

    Google Scholar 

  • Harder, W. and Veldkamp, H. (1971) Competition of marine psychrophilic bacteria at low temperatures. Ant. van Leeuwenh: J. Microbiol. Serol. 37, 51–63.

    Google Scholar 

  • Hirsch, P., Hoffmann, B., Gallikowski, C., Mevs, U., Siebert, J. and Sittig, M. (1988) Diversity and identification of heterotrophs from Antarctic rocks and the McMurdo Dry Valleys (Ross Desert). Polarforsch. 58, 261–9.

    Google Scholar 

  • Johnston, I.A., Guderley, H., Franklin, C.E., Crockford, T. and Kamunde, C. (1994) Are mitochondria subject to evolutionary temperature adaptation. J. Exper. Biol. 195, 293–306.

    Google Scholar 

  • Kobori, H., Sullivan, C.W. and Shizuya, H.S. (1984) Heat labile alkaline phosphatase from antarctic bacteria: rapid end labelling of nucleic acids. Proc. Natl. Acad. Sci. USA 81, 6691–5.

    Google Scholar 

  • Kriss, A.E., Mitskevich, N.I., Rozanova, E.P. and Osnitskaya, L.K. (1977) Microbiological investigations of Lake Vanda (Antarctica). Microbiol. 45, 917–22.

    Google Scholar 

  • Lane, D.J., Pace, B., Olsen, G.J., Stahl, D.A., Sogin, M.L. and Pace, N.R. (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82, 6955–9.

    Google Scholar 

  • Larsen, N., Olsen, G.J., Maidak, B.L., McCaughey, M.J. Overbeek, R., Macke, T.J., Marsh, T.L. and Woese, C.R. (1993) The ribosomal database project. Nuc. Acid. Res. 21 (Supplement), 3021–3.

    Google Scholar 

  • Line, M.A. (1988) Microbial flora of some soils of Mawson Base and the Vestfold Hills, Antarctica. Polar Biol. 421-7.

  • Minelli, A. (1994) Biological Systematics. The State of the Art. London: Chapman and Hall.

    Google Scholar 

  • Moran, N.A., Munson, M.A., Baumann, P. and Ishikawa, H. (1993) A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc. Roy. Soc. London, Series B 253, 167–71.

    Google Scholar 

  • Nedwell, D.B. and Rutter, M. (1994) Influence of temperature on growth rate and competition between two psychrotolerant Antarctic bacteria: low temperature diminishes affinity for substrate uptake. Appl. Environ. Microbiol. 60, 1984–92.

    Google Scholar 

  • Ochman, H. and Wilson, A.C. (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J. Mol. Evol. 26, 74–86.

    Google Scholar 

  • Olsen, G.J., Woese, C.R. and Overbeek, R. (1994) The winds of (evolutionary) change: breathing new life into microbiology. J. Bact. 176, 1–6.

    Google Scholar 

  • Parmelee, D.F., Maxson, S.J. and Bernstein, N.P. (1979) Fowl cholera outbreak among brown skuas at palmer Station. Antarct. J. USA 15, 168–9.

    Google Scholar 

  • Ratkowsky, D.A., Lowrey, R.K., McMeekin, T.A., Stokes, A. and Chandler, R.E. (1983) Model for bacterial growth throughout the entire biokinetic range. J. Bact. 154, 1222–6.

    Google Scholar 

  • Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.TT. Mullis, K.B. and Erlich, H.A. (1988) Primer directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239, 487–91.

    Google Scholar 

  • SchlichtingJr., H.E., Speziale, B.J. and Zink, R.M. (1978) Dispersal of algae and protozoa by Antarctic flying birds. Antarct. J. USA 14, 147–9.

    Google Scholar 

  • Shivaji, S., Rao, N.S., Saisree, L., Sheth, V., Reddy, G.S.N., and Bhargava, P.M. (1989) Isolation and identification of Pseudomonas spp from Schirmacher oasis, Antarctica. Appl. Environ. Microbiol. 55, 767–70.

    Google Scholar 

  • Shivaji, S., Ray, M.K., Kumar, G.S., Reddy, G.S.N., Saisree, L. and Wynn-Williams, D.D. (1991) Identification of Janthinobacterium lividum from the soils of the islands of Scotia Ridge and from Antarctic peninsula. Polar Biol. 11, 267–71.

    Google Scholar 

  • Shivaji, S., Ray, M.K., Rao, N.S., Saistree, L., Jagannadham, M.V., Kumar, G.S., Reddy, G.S.N. and Bhargava, M.P. (1992) Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher oasis, Antarctica. Int. J. Syst. Bact. 42, 102–6.

    Google Scholar 

  • Sieburth, J. McN. (1965) Microbiology of Antarctica. In Biogeography and Ecology in Antarctica (P.van Oye and J.Van Mieghem, eds) pp. 267–95. The Hague: Dr W. Junk.

    Google Scholar 

  • Simidu, U., Kogure, K., Fukami, K. and Imada, C. (1986) Heterotrophic bacterial flora of the Antarctic Ocean. Mem. Natl. Inst. Polar Res. Special Issue 40, 405–12.

    Google Scholar 

  • Simmons, G.M., Vestal, J.R. and WhartonJr., R.A. (1993) Environmental regulators of microbial activity in continental Antarctic lakes. In Antarctic Microbiology (E.I. Friedmann, ed.) pp. 491–541. New York: Wiley-Liss.

    Google Scholar 

  • Staley, J.T., Irgens, R.L. and Herwig, R.P. (1989) Gas vacuolate bacteria from the sea-ice of Antarctica. Appl. Environ. Microbiol. 55, 1033–6.

    Google Scholar 

  • Swofford, D.L. (1990) PAUP: Phylogenetic Analysis Using Parsimony, Version 3.0. Campaign: Illinois Natural History Survey.

    Google Scholar 

  • Vincent, W.F. (1988) Microbial Ecosystems of Antarctica. Cambridge: Cambridge University Press.

    Google Scholar 

  • Vincent, W.F. and Quesada, A. (in press) Microbial niches and the escape from UV radiation in polar environments. SCAR Sixth Biology Symposium, Venice May 30th–3rd Jun e.

  • Vishniac, H.S. (1993) The microbiology of Antarctic soils. In Antarctic Microbiology (E.I. Friedmann, ed.) pp. 297–341. New York: Wiley-Liss.

    Google Scholar 

  • Vishniac, H.S. and Hempling, W.P. (1979) Evidence of an indigenous microbiota (yeast) in the Dry Valleys of Antarctica. J. Gen. Microbiol. 112, 301–14.

    Google Scholar 

  • Woese, C.R. (1987) Bacterial evolution. Microbiol. Rev. 51, 221–71.

    Google Scholar 

  • Woese, C.R. and Fox, G.E. (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74, 5088–90.

    Google Scholar 

  • Woese, C.R., Fox, G.E., Zabel, L., Uchida, T., Bonen, L., Pechman, K., Lewis, J.B. and Stahl, D. (1975) Conservation of primary structure in 16S ribosomal RNA. Nature 254, 83–6.

    Google Scholar 

  • Wynn-Williams, D.D. (1990) Ecological aspects of Antarctic microbiology. In Advances in Microbial Ecology (K.C. Marshall, ed.) pp. 71–146. New York: Plenum Press.

    Google Scholar 

  • Zavarzin, G.A. (1993) An ecological approach to the systematics of prokaryotes. In Trends in Microbial Ecology (R. Guerrero and C. Pedros-Alio, eds) pp. 555–8. Madrid: Spanish Society for Microbiology.

    Google Scholar 

  • Zuckerkandl, E. and Pauling, L. (1965) Molecules as documents of evolutionary history. J. Theor. Biol. 8, 357–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franzmann, P.D. Examination of Antarctic prokaryotic diversity through molecular comparisons. Biodivers Conserv 5, 1295–1305 (1996). https://doi.org/10.1007/BF00051980

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00051980

Keywords

Navigation