Skip to main content
Log in

Current advances in abscisic acid action and signalling

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA) participates in the control of diverse physiological processes. The characterization of deficient mutants has clarified the ABA biosynthetic pathway in higher plants. Deficient mutants also lead to a revaluation of the extent of ABA action during seed development and in the response of vegetative tissues to environmental stress. Although ABA receptor(s) have not yet been identified, considerable progress has been recently made in the characterization of more downstream elements of the ABA regulatory network. ABA controls stomatal aperture by rapidly regulating identified ion transporters in guard cells, and the details of the underlying signalling pathways start to emerge. ABA actions in other cell types involve modifications of gene expression. The promoter analysis of ABA-responsive genes has revealed a diversity of cis-acting elements and a few associated trans-acting factors have been isolated. Finally, characterization of mutants defective in ABA responsiveness, and molecular cloning of the corresponding loci, has proven to be a powerful approach to dissect the molecular nature of ABA signalling cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Addicott FT (ed): Abscisic Acid Praeger Scientific, New York (1983).

    Google Scholar 

  2. Addicott FT, Carns HR: History and introduction. In: Addicott FT (ed) Abscisic Acid, pp. 1–21. Praeger Scientific, New York (1983).

    Google Scholar 

  3. Alexandre J, Lassalles JP, Kado RT: Opening of Ca2+ channels in isolated red beet root vacuole membrane by inositol 1,4,5-trisphophate. Nature 343: 567–569 (1990).

    Article  Google Scholar 

  4. Anderson BE, Ward JM, Schroeder JI: Evidence for an extracellular reception site for abscisic acid in Commelina guard cells. Plant Physiol 104: 1177–1183 (1994).

    PubMed  Google Scholar 

  5. Avery L, Wasserman S: Ordering gene function: the interpretation of epistasis in regulatory hierarchies. Trends Genet 8: 312–316 (1992).

    PubMed  Google Scholar 

  6. Black M: Involvement of ABA in the physiology of developing and mature seeds. In: Davies WJ, Jones HG (eds) Abscisic Acid Physiology and Biochemistry, pp. 99–124. BIOS Scientific Publishers, Oxford (1991).

    Google Scholar 

  7. Blatt M: Potassium channel currents in intact stomatal guard cells: rapid enhancement by abscisic acid. Planta 180: 445–455 (1990).

    Article  Google Scholar 

  8. Blatt MR, Armstrong F: K+ channels of stomatal guard cells: abscisic acid-evoked control of the outward rectifier mediated by cytoplasmic pH. Planta 191: 330–341 (1993).

    Article  Google Scholar 

  9. Blatt MR, Thiel G: Hormonal control of ion channel gating. Annu Rev Plant Physiol Plant Mol Biol 44: 543–567 (1993).

    Article  Google Scholar 

  10. Blatt MR, Thiel G, Trentham DR: Reversible inactivation of K+ channels of Vicia stomatal guard cells following the photolysis of caged inositol 1,4,5-trisphosphate. Nature 346: 766–769 (1990).

    Article  PubMed  Google Scholar 

  11. Bostock RM, Quatrano RS: Regulation of Em gene expression in rice. Interaction between osmotic stress and abscisic acid. Plant Physiol 98: 1356–1363 (1992).

    Google Scholar 

  12. Bouvier-Durand M, Real M, Côme D: Changes in nuclear activity upon secondary dormancy induction by abscisic acid in apple embryo. Plant Physiol Biochem 27: 511–518 (1989).

    Google Scholar 

  13. Bray EA: Molecular responses to water deficit. Plant Physiol 103: 1035–1040 (1993).

    PubMed  Google Scholar 

  14. Castle LA, Meinke DW: A FUSCA gene of Arabidopsis encodes a novel protein essential for plant development. Plant Cell 6: 25–41 (1994).

    Article  PubMed  Google Scholar 

  15. Chen H-H, Li PH, Brenner ML: Involvement of abscisic acid in potato cold acclimation. Plant Physiol 71: 362–365 (1983).

    Google Scholar 

  16. Cohen A, Bray EA: Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevated levels of endogenous abscisic acid. Planta 182: 27–33 (1990).

    Article  Google Scholar 

  17. Cohen P: The structure and regulation of protein phosphatases. Annu Rev Biochem 58: 453–508 (1989).

    Article  PubMed  Google Scholar 

  18. Davies WJ, Jones HG (eds). Abscisic acid physiology and biochemistry. BIOS Scientific Publishers, Oxford (1991).

    Google Scholar 

  19. Davies WJ, Tardieu F, Trejo CL: How do chemical signals work in plants that grown in drying soil? Plant Physiol 104: 309–314 (1994).

    PubMed  Google Scholar 

  20. deVetten NC, Lu G, Ferl RJ: A maize protein associated with the G-box binding complex has homology to brain regulatory proteins. Plant Cell 4: 1295–1307 (1992).

    Article  PubMed  Google Scholar 

  21. DeLisle AJ, Ferl RJ: Characterization of the Arabidopsis Adh G-box binding factor. Plant Cell 2: 547–557 (1990).

    Article  PubMed  Google Scholar 

  22. Delseny M, Gaubier P, Hull G, Saez-Vasquez J, Gallois P, Raynal M, Cooke R, Grellet F: Nuclear genes expressed during seed desiccation: relationship with response to stress. In: Basra AS (ed) Stress-Induced Gene Expression in Plants, pp. 25–59. Harwood Academic Publishers, Reading, UK (1994).

    Google Scholar 

  23. Dohlman HG, Thorner J, Caron MG, Lefkowitz RJ: Model systems for the study of seven-transmembrane-segment receptors. Annu Rev Biochem 60: 653–688 (1991).

    Article  PubMed  Google Scholar 

  24. Donald RGK, Cashmore AR: Mutation of either G box or I box sequences profoundly affects expression of the Arabidopsis rbcS-1A promoter. EMBO J 9: 1717–1726 (1990).

    PubMed  Google Scholar 

  25. Dooner HK: Viviparous-1 mutation in maize conditions pleiotropic enzyme deficiencies in the aleurone. Plant Physiol 77: 486–488 (1985).

    Google Scholar 

  26. Duckham SC, Linforth RST, Taylor IB: Abscisic acid deficient mutants at the aba gene locus of Arabidopsis thaliana are impaired in the epoxidation of zeaxanthin. Plant Cell Environ 14: 601–606 (1991).

    Google Scholar 

  27. Duckham SC, Taylor IB, Linforth RST, Al-Naieb RJ, Marples BA, Bowman WR: The metabolism of cis ABA-aldehyde by the wilty mutants of potato, pea and Arabidopsis thaliana. J Exp Bot 40: 901–905 (1989).

    Google Scholar 

  28. DureIII L: The Lea proteins of higher plants. In: Verma DPS (ed) Control of Plant Gene Expression, pp. 325–335. CRC Press, Boca Raton, FL (1993).

    Google Scholar 

  29. DureIII L, Crouch M, Harada J, Ho T-HD, Mundy J, Quatrano R, Thomas T, Sung ZR: Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12: 475–486 (1989).

    Google Scholar 

  30. Fairley-Grenot K, Assmann S: Evidence for G-protein regulation of inward K+ channel current in guard cells of fava bean. Plant Cell 3: 1037–1044 (1991).

    Article  PubMed  Google Scholar 

  31. Farmer EE, Ryan CA: Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87: 7713–7716 (1990).

    PubMed  Google Scholar 

  32. Farmer EE, Ryan CA: Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4: 129–134 (1992).

    Article  PubMed  Google Scholar 

  33. Finkelstein RR: Abscisic acid-insensitive mutations provide evidence for stage-specific signal pathways regulating expression of an Arabidopsis late embryogenesis-abundant (lea) gene. Mol Gen Genet 238: 401–408 (1993).

    Article  PubMed  Google Scholar 

  34. Finkelstein RR: Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. Plant J 5: 765–771 (1994).

    Article  Google Scholar 

  35. Finkelstein RR, Crouch ML: Rapeseed embryo development in culture on high osmoticum is similar to that in seeds. Plant Physiol 81: 907–912 (1986).

    Google Scholar 

  36. Finkelstein RR, Doyle MP: Molecular genetic analysis of abscisic acid signal transduction in Arabidopsis. Fifth International Conference on Arabidopsis. Research, Columbus, OH (1993).

  37. Finkelstein RR, Somerville CR: Three classes of abscisic acid (ABA)-insensitive mutations of Arabidopsis define genes that control overlapping subsets of ABA responses. Plant Physiol 94: 1172–1179 (1990).

    Google Scholar 

  38. Galau GA, Jakobsen KS, Hughes DW: The controls of late dicot embryogenesis and early germination. Physiol Plant 81: 280–288 (1991).

    Article  Google Scholar 

  39. Gaubier P, Raynal M, Hull G, Huestis GM, Grellet F, Arenas C, Pagès M, Delseny M: Two different Em-like genes are expressed in Arabidopsis thaliana seeds during maturation. Mol Gen Genet 238: 409–418 (1993).

    Article  PubMed  Google Scholar 

  40. Gehring CA, Irving HR, Parish RW: Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells. Proc Natl Acad Sci USA 87: 9645–9649 (1990).

    PubMed  Google Scholar 

  41. Gilmour SJ, Thomashow MF: Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol Biol 17: 1233–1240 (1991).

    PubMed  Google Scholar 

  42. Gilroy S, Fricker MD, Read ND, Trewavas AJ: Role of calcium in signal transduction of Commelina guard cells. Plant Cell 3: 333–344 (1991).

    PubMed  Google Scholar 

  43. Gilroy S, Jones RL: Perception of gibberellin and abscisic acid at the external face of the plasma membrane of barley (Hordeum vulgare L.) aleurone protoplasts. Plant Physiol 104: 1185–1192 (1994).

    PubMed  Google Scholar 

  44. Gilroy S, Read ND, Trewavas AJ: Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure. Nature 343: 769–771 (1990).

    Google Scholar 

  45. Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM: Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4: 1251–1261 (1992).

    PubMed  Google Scholar 

  46. Giulano G, Pichersky E, Malik VS, Timko MP, Scolnik PA, Cashmore AR: An evolutionary conserved protein binding sequence upstream of a plant light-regulated gene. Proc Natl Acad Sci USA 85: 7089–7093 (1988).

    PubMed  Google Scholar 

  47. Goday A, Jensen AB, Culianze-Macia FA, Alba MM, Figueras M, Serratosa J, Torrent M, Pages M: The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell 6: 351–360 (1994).

    PubMed  Google Scholar 

  48. Goffner D, This P, Delseny M: Effects of abscisic acid and osmotica on helianthinin gene expression in sunflower cotyledons in vitro. Plant Sci 66: 211–219 (1990).

    Google Scholar 

  49. Goldberg RB, Barker SJ, Perez-Grau L: Regulation of gene expression during plant embryogenesis. Cell 56: 149–160 (1989).

    Article  PubMed  Google Scholar 

  50. Gosti F, Bertauche N, Vartanian N, Giraudat J: Abscisic acid-dependent and-independent regulation of gene expression by progressive drought in Arabidopsis thaliana. Mol Gen Genet, in press (1994).

  51. Grill E, Ehrler T, Meyer K, Leube M: Steps of abscisic acid action. Fifth International Conference on Arabidopsis Research, Columbus, OH (1993).

  52. Guarente L: Synthetic enhancement in gene interaction: a genetic tool come of age. Trends Genet 9: 362–366 (1993).

    PubMed  Google Scholar 

  53. Guerche P, Tire C, Grossi de Sa F, DeClercq A, VanMontagu M, Krebbers E: Differential expression of the Arabidopsis 2S albumin genes and the effect of increasing gene family size. Plant Cell 2: 469–478 (1990).

    Article  PubMed  Google Scholar 

  54. Guerrero F, Mullet JE: Increased abscisic acid biosynthesis during plant dehydration requires transcription. Plant Physiol 80: 588–591 (1986).

    Google Scholar 

  55. Guerrero FD, Jones JT, Mullet JE: Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Mol Biol 15: 11–26 (1990).

    PubMed  Google Scholar 

  56. Guerrero FD, Mullet JE: Reduction of turgor induces rapid changes in leaf translatable RNA. Plant Physiol 88: 401–408 (1988).

    Google Scholar 

  57. Guiltinan MJ, Marcotte WR, Quatrano RS: A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250: 267–271 (1990).

    PubMed  Google Scholar 

  58. Harris MJ, OutlawJr. WH: Rapid adjustement of guard-cell abscisic acid levels to current leaf-water status. Plant Physiol 95: 171–173 (1991).

    Google Scholar 

  59. Hartung W: The site of action of abscisic acid at the guard cell plasmalemma of Valerianella locusta. Plant Cell Environ 6: 427–428 (1983).

    Google Scholar 

  60. Hattori T, Vasil V, Rosenkrans L, Hannah LC, McCarty DR, Vasil JK: The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Devel 6: 609–618 (1992).

    PubMed  Google Scholar 

  61. Hedrich R, Busch H, Raschke K: Ca2+ and nucleotide dependent regulation of voltage dependent anion channels in the plasma membrane of guard cells. EMBO J 9: 3889–3892 (1990).

    PubMed  Google Scholar 

  62. Heino P, Sandman G, Lang V, Nordin K, Palva ET: Abscisic acid deficiency prevents development of freezing tolerance in Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 79: 801–806 (1990).

    Article  Google Scholar 

  63. Hemerly AS, Ferreira P, deAlmeida Engler J, VanMontagu M, Engler G, Inzé D: cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5: 1711–1723 (1993).

    PubMed  Google Scholar 

  64. Hetherington AM, Quatrano RS: Mechanisms of action of abscisic acid at the cellular level. New Phytol 119: 9–32 (1991).

    Google Scholar 

  65. Hildmann T, Ebneth M, Pena-Cortes H, Sanchez-Serrano JJ, Willmitzer L, Prat S: General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding. Plant Cell 4: 1157–1170 (1992).

    PubMed  Google Scholar 

  66. Hocking TJ, Clapham KJ, Cattell KJ: Abscisic acid binding to subcellular fractions from leaves of Vicia faba. Planta 138: 303–304 (1978).

    Google Scholar 

  67. Hornberg C, Weiler EW: High-affinity binding sites for abscisic acid on plasmalemma of Vicia faba guard cells. Nature 310: 321–324 (1984).

    Google Scholar 

  68. Hughes DW, Galau GA: Temporally modular gene expression during cotyledon development. Genes Devel 3: 358–369 (1989).

    PubMed  Google Scholar 

  69. Hughes DW, Galau GA: Developmental and environmental induction of Lea and LeaA mRNAs and the postabscission program during embryo culture. Plant Cell 3: 605–618 (1991).

    PubMed  Google Scholar 

  70. Hull G, Gaubier P, Delseny M, Casse-Delbart F: Abscisic acid inducible genes and their regulation in higher plants. Current Top Mol Genet (Life Sci Adv) 1: 289–305 (1993).

    Google Scholar 

  71. Hunter T, Karin M: The regulation of transcription by phosphorylation. Cell 70: 375–387 (1992).

    PubMed  Google Scholar 

  72. Irving HR, Gehring CA, Parish RW: Changes in cytosolic pH and calcium of guard cells precede stomatal movements. Proc Natl Acad Sci USA 89: 1790–1794 (1992).

    PubMed  Google Scholar 

  73. Izawa T, Foster R, Chua N-H: Plant bZIP protein DNA binding specificity. J Mol Biol 230: 1131–1144 (1993).

    PubMed  Google Scholar 

  74. Jacobs T: Control of the cell cycle. Devel Biol 153: 1–15 (1992).

    Article  Google Scholar 

  75. Karssen CM, Brinkhorst-van der Swan DLC, Breekland AE, Koornneef M: Induction of dormancy during seed development by endogenous abscsis acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157: 158–165 (1983).

    Google Scholar 

  76. Kaziro Y, Itoh H, Kozasa T, Nakafuku M, Satoh T: Structure and function of signal-transducing GTP-binding proteins. Annu Rev Biochem 60: 349–400 (1991).

    Article  PubMed  Google Scholar 

  77. Kearns EV, Assmann SM: The guard cell environment connection. Plant Physiol 102: 711–715 (1993).

    PubMed  Google Scholar 

  78. Koornneef M, Hanhart CJ, Hilhorst HWM, Karssen CM: In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiol 90: 463–469 (1989).

    Google Scholar 

  79. Koornneef M, Jorna ML, Brinkhorst-van der Swan DLC, Karssen CM: The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) Heynh. Theor Appl Genet 61: 385–393 (1982).

    Google Scholar 

  80. Koornneef M, Reuling G, Karssen CM: The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61: 377–383 (1984).

    Google Scholar 

  81. Kraml M, Keith K, McCourt P: A non-dormant Arabidopsis mutant which is sensitive to ABA. Fifth International Conference on Arabidopsis Research. Columbus, OH (1993).

  82. Lam E, Chua N-H: Tetramer of a 21-base pair synthetic element confers seed expression and transcriptional enhancement in response to water stress and abscisic acid. J Biol Chem 266: 17131–17135 (1991).

    PubMed  Google Scholar 

  83. Lang V, Palva ET: The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol Biol 20: 951–962 (1992).

    PubMed  Google Scholar 

  84. Lee HJ, Tucker EB, Crain RC, Lee Y: Stomatal opening is induced in epidermal peels of Commmelina communis L. by GTP analogs or pertussis toxin. Plant Physiol 102: 95–100 (1993).

    PubMed  Google Scholar 

  85. Lee Y, Assmann SM: Diacylglycerols induce both ion pumping in patch-clamped guard-cell protoplasts and opening of intact stomata. Proc Natl Acad Sci USA 88: 2127–2131 (1991).

    PubMed  Google Scholar 

  86. Leung J, Bouvier-Durand M, Morris P-C, Guerrier D, Chefdor F, Giraudat J. Arabidopsis ABA-response gene ABII: features of a calcium-modulated protein phosphatase. Science 264: 1448–1452 (1994).

    PubMed  Google Scholar 

  87. Levi M, Brusa P, Chiatante D, Sparvoli E: Cell cycle reactivation in cultured pea embryo axes. Effect of abscisic acid. In Vitro Cell Devel Biol 29: 47–50 (1993).

    Google Scholar 

  88. Lobréaux S, Hardy T, Briat J-F: Abscisic acid is involved in the iron-induced synthesis of maize ferritin. EMBO J 12: 651–657 (1993).

    PubMed  Google Scholar 

  89. Luan S, Li W, Rusnak F, Assmann SM, Schreiber SL: Immunosuppressants implicate protein phosphatase regulation of K+ channels in guard cells. Proc Natl Acad Sci USA 90: 2202–2206 (1993).

    PubMed  Google Scholar 

  90. MacRobbie EAC: Effects of ABA in isolated guard cells of Commelina communis L. J Exp Bot 32: 563–572 (1981).

    Google Scholar 

  91. MacRobbie EAC: Calcium-dependent and calcium-independent events in the initiation of stomatal closure by abscisic acid. Proc R Soc Series B 241: 214–219 (1990).

    Google Scholar 

  92. MacRobbie EAC: Effect of ABA on ion transport and stomatal regulation. In: Davies WJ, Jones HG (eds) Abscisic Acid Physiology and Biochemistry, pp. 153–168. BIOS Scientific Publishers, Oxford (1991).

    Google Scholar 

  93. Maeda T, Tsai AYM, Saito H: Mutations in a protein tyrosine phosphatase gene (PTP2) and a protein serine/threonine phosphatase gene (PTC1) cause a synthetic growth defect in Saccharomyces cerevisiae. Mol Cell Biol 13: 5408–5417 (1993).

    PubMed  Google Scholar 

  94. Mansfield TA: Hormones as regulators of water balance. In: Davies RD (ed) Plant Hormones and their Role in Plant Growth and Development, pp. 411–430. Martinus Nijhoff, Dordrecht (1988).

    Google Scholar 

  95. Marcotte WR, Russell SH, Quatrano RS: Abscisic acid-responsive sequences from the Em gene of wheat. Plant Cell 1: 969–976 (1989).

    Article  PubMed  Google Scholar 

  96. McAinsh MR, Brownlee AM, Hetherington AM: Abscisic acid-induced elevation of guard cell calcium precedes stomatal closure. Nature 343: 186–188 (1990).

    Article  Google Scholar 

  97. McAinsh MR, Brownlee C, Hetherington AM: Partial inhibition of ABA-induced stomatal closure by calcium-channel blockers. Proc R Soc Series B 243: 195–201 (1991).

    Google Scholar 

  98. McAinsh MR, Brownlee C, Hetherington AM: Visualizing changes in cytosolic-free Ca2+ during the response of stomatal guard cells to abscisic acid. Plant Cell 4: 1113–1122 (1992).

    Article  PubMed  Google Scholar 

  99. McAnish MR, Brownlee C, Sarsag M, Webb AAR, Hetherington AM: Involvement of second messengers in the action of ABA. In: Davies WJ, Jones HG (eds) Abscisic Acid Physiology and Biochemistry, pp. 137–152. BIOS Scientific Publishers, Oxford (1991).

    Google Scholar 

  100. McCarty DR, Carson CB, Lazar M, Simonds SC: Transposable element-induced mutations of the viviparous-1 gene in maize. Devel Genet 10: 473–481 (1989).

    Google Scholar 

  101. McCarty DR, Carson CB, Stinard PS, Robertson DS: Molecular analysis of viviparous-1: an abscisic acid-insensitive mutant of maize. Plant Cell 1: 523–532 (1989).

    Article  PubMed  Google Scholar 

  102. McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK: The viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66: 895–905 (1991).

    Article  PubMed  Google Scholar 

  103. Meinke DW: A homeotic mutant of Arabidopsis thaliana with leafy cotyledons. Science 258: 1647–1650 (1992).

    Google Scholar 

  104. Melan MA, Dong X, Endara ME, Davis KR, Ausubel FM, Peterman TK: An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol 101: 441–450 (1993).

    Article  PubMed  Google Scholar 

  105. Meurs C, Basra AS, Karssen CM, vanLoon LC: Role of abscisic acid in the induction of desiccation tolerance in developing seeds of Arabidopsis thaliana. Plant Physiol 98: 1484–1493 (1992).

    Google Scholar 

  106. Meyer K, Leube MP, Grill E: A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana Science 264: 1452–1455 (1994).

    PubMed  Google Scholar 

  107. Moncrief ND, Kretsinger RH, Goodman M: Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J Mol Evol 30: 522–562 (1990).

    PubMed  Google Scholar 

  108. Moore R, Smith JD: Graviresponsiveness and abscisic acid content of roots of carotenoid-deficient mutants of Zea mays L. Planta 164: 126–128 (1985).

    PubMed  Google Scholar 

  109. Morris PC, Kumar A, Bowles DJ, Cuming AC: Osmotic stress and abscisic acid induce expression of the wheat Em genes. Eur J Biochem 190: 625–630 (1990).

    PubMed  Google Scholar 

  110. Morris PC, Weiler EW, Maddock SE, Jones MGK, Lenton JR, Bowles DJ: Determination of endogenous abscisic acid levels in immature cereal embryos during in vitro culture. Planta 173: 110–116 (1988).

    Google Scholar 

  111. Mundy J, Yamaguchi-Shinozaki K, Chua N-H: Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc Natl Acad Sci USA 87: 1406–1410 (1990).

    PubMed  Google Scholar 

  112. Nambara E, Naito S, McCourt P: A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele. Plant J 2: 435–441 (1992).

    Google Scholar 

  113. Neill SJ, Horgan R: Abscisic acid production and water relations in wilty tomato mutants subjected to water deficiency. J Exp Bot 36: 1222–1231 (1985).

    Google Scholar 

  114. Neill SJ, Horgan R, Parry AD: The carotenoid and abscisic acid content of viviparous kernels and seedlings of Zea mays L. Planta 169: 87–96 (1986).

    Google Scholar 

  115. Nelson D, Salamini F, Bartels D: Abscisic acid promotes novel DNA-binding activity to a desiccation-related promoter of Craterostigma plantagineum. Plant J 5: 451–458 (1994).

    Article  PubMed  Google Scholar 

  116. Nordin K, Heino P, Palva ET: Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol 16: 1061–1071 (1991).

    PubMed  Google Scholar 

  117. Nordin K, Vahala T, Palva ET: Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynth. Plant Mol Biol 21: 641–653 (1993).

    PubMed  Google Scholar 

  118. Oeda K, Salinas J, Chua N-H: A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes. EMBO J 10: 1793–1802 (1991).

    PubMed  Google Scholar 

  119. Ooms JJJ, Léon-Kloosterziel KM, Bartels D, Koornneef M, Karssen CM: Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana. A comparative study using abscisic acid-insensitive abi3 mutants. Plant Physiol 102: 1185–1191 (1993).

    PubMed  Google Scholar 

  120. Paiva R, Kriz AL: Effect of abscisic acid on embryo-specific gene expression during normal and precocious germination in normal and viviparous maize (Zea mays) embryos. Planta 192: 332–339 (1994).

    Article  Google Scholar 

  121. Pang PP, Pruitt RE, Meyerowitz EM: Molecular cloning, genomic organization, expression and evolution of 12S seed storage protein genes of Arabidopsis thaliana. Plant Mol Biol 11: 805–820 (1988).

    Google Scholar 

  122. Parcy F, Valon F, Raynal M, Gaubier P, Delseny M, Giraudat J: Regulation of gene expression by the Arabidopsis ABI3 (abscisic acid-insensitive) gene: analysis of mutant and transgenic plants. Fifth International Conference on Arabidopsis Research, Columbus, OH (1993).

  123. Parry AD, Blonstein AD, Babiano MJ, King PJ, Horgan R: Abscisic acid metabolism in a wilty mutant of Nicotiana plumbaginifolia. Planta 183: 237–243 (1991).

    Article  Google Scholar 

  124. Parthier B: Jasmonates, new regulators of plant growth and development: many facts and few hypotheses on their actions. Bot Acta 104: 446–454 (1991).

    Google Scholar 

  125. Pena-Cortes H, Albrecht T, Prat S, Weiler EW, Willmitzer L: Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191: 123–128 (1993).

    Google Scholar 

  126. Pena-Cortés H, Sanchez-Serrano JJ, Mertens R, Willmitzer L, Prat S: Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. Proc Natl Acad Sci USA 86: 9851–9855 (1989).

    Google Scholar 

  127. Pena-Cortes H, Willmitzer L, Sanchez-Serrano JJ: Abscisic acid mediates the wound induction but not developmental-specific expression of the proteinase inhibitor II gene family. Plant Cell 3: 963–972 (1991).

    Article  PubMed  Google Scholar 

  128. Pla M, Goday A, Vilardell J, Gomez J, Pagès M: Differential regulation of ABA-induced 23–25kDa proteins in embryo and vegetative tissues of the viviparous mutants of maize. Plant Mol Biol 13: 385–394 (1989).

    Article  PubMed  Google Scholar 

  129. Pla M, Gomez J, Goday A, Pagès M: Regulation of the abscisic acid-responsive gene rab28 in maize viviparous mutants. Mol Gen Genet 230: 394–400 (1991).

    Article  PubMed  Google Scholar 

  130. Pla M, Vilardell J, Guiltinan MJ, Marcotte WR, Niogret M-F, Quatrano RS, Pagès M: The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28 Plant Mol Biol 21: 259–266 (1993).

    PubMed  Google Scholar 

  131. Quarrie S: Droopy: a wilty mutant of potato deficient in abscisic acid. Plant Cell Environ 5: 23–26 (1982).

    Google Scholar 

  132. Quatrano RS: The role of hormones during seed development. In: Davies PJ (ed) Plant Hormones and their Role in Plant Growth and Development, pp. 494–514. Kluwer Academic Publishers, Dordrecht (1988).

    Google Scholar 

  133. Raskin I, Ladyman JAR: Isolation and characterization of a barley mutant with abscisic acid-insensitive stomata. Planta 173: 73–78 (1988).

    Google Scholar 

  134. Robertson DS: The genetics of vivipary in maize. Genetics 40: 745–760 (1955).

    Google Scholar 

  135. Robichaud C, Sussex IM: The response of viviparous-1 and wild-type embryos of Zea mays to culture in the presence of abscisic acid. J Plant Physiol 126: 235–242 (1986).

    Google Scholar 

  136. Rock CD, Heath TG, Gage DA, Zeevaart JAD: Abscisic alcohol is an intermediate in abscisic acid biosynthesis in a shunt pathway from abscisic aldehyde. Plant Physiol 97: 670–676 (1991).

    Google Scholar 

  137. Rock CD, Zeevaart JA: The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc Natl Acad Sci USA 88: 7496–7499 (1991).

    PubMed  Google Scholar 

  138. Rogers JC, Rogers SW: Definition and functional implications of gibberellin and abscisic acid cis-acting hormone response complexes. Plant Cell 4: 1443–1451 (1992).

    Article  PubMed  Google Scholar 

  139. Rousselin P, Kraepiel Y, Maldiney R, Miginiac E, Caboche M: Characterization of three hormone mutants of Nicotiana plumbaginifolia: evidence for a common ABA deficiency. Theor Appl Genet 85: 213–221 (1992).

    Article  Google Scholar 

  140. Ryan CA: The search for the proteinase inhibitor-inducing factor, PIIF. Plant Mol Biol 19: 123–133 (1992).

    PubMed  Google Scholar 

  141. Salinas J, Oeda K, Chua N-H: Two G-box related sequences confer different expression patterns in transgenic tobacco. Plant Cell 4: 1485–1493 (1992).

    Article  PubMed  Google Scholar 

  142. Schnall JA, Quatrano RS: Abscisic acid elicits the water-stress response in root hairs of Arabidopsis thaliana. Plant Physiol 100: 216–218 (1992).

    Google Scholar 

  143. Schroeder J: Plasma membrane ion channel regulation during abscisic acid-induced closing of stomata. Phil Trans R Soc Lond B 338: 83–89 (1992).

    Google Scholar 

  144. Schroeder J, Hagiwara S: Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338: 427–430 (1989).

    Article  Google Scholar 

  145. Schroeder J, Keller BU: Two types of anion channel currents in guard cells with distinct voltage regulation. Proc Natl Acad Sci USA 89: 5025–5029 (1992).

    PubMed  Google Scholar 

  146. Schroeder J, Schmidt C, Sheaffer J: Identification of high-affinity slow anion channel blockers and evidence for stomatal regulation by slow anion channels in guard cells. Plant Cell 5: 1831–1841 (1993).

    Article  PubMed  Google Scholar 

  147. Schroeder JI, Hagiwara S: Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+-permeable channels. Proc Natl Acad Sci USA 87: 9305–9309 (1990).

    PubMed  Google Scholar 

  148. Schwartz A, Wu W-H, Tucker EB, Assmann SM: Inhibition of inward K+ channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action. Proc Natl Acad Sci USA 91: 4019–4023 (1994).

    PubMed  Google Scholar 

  149. Skriver K, Mundy J: Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2: 503–512 (1990).

    Article  PubMed  Google Scholar 

  150. Skriver K, Olsen FL, Rogers JC, Mundy J: Cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc Natl Acad Sci USA 88: 7266–7270 (1991).

    PubMed  Google Scholar 

  151. Stewart CR, Voetberg G: Relationship between stress-induced ABA and proline accumulations and ABA-induced proline accumulation in excised barley leaves. Plant Physiol 79: 24–27 (1985).

    Google Scholar 

  152. Tal M, Imber D, Erez A, Epstein E: Abnormal stomatal behavior and hormonal imbalance in flacca, a wilty mutant of tomato. V. Effect of abscisic acid on indoleacetic acid metabolism and ethylene evolution. Plant Physiol 63: 1044–1048 (1979).

    Google Scholar 

  153. Tal M, Nevo Y: Abnormal stomatal behaviour and root resistance, and hormonal imbalance in three wilty mutants of tomato. Biochem Genet 8: 291–300 (1973).

    PubMed  Google Scholar 

  154. Tamura S, Lynch KR, Larner J, Fox J, Yasui A, Kikuchi K, Suzuki Y, Tsuiki S: Molecular cloning of rat type 2C (1A) protein phosphatase mRNA. Proc Natl Acad Sci USA 86: 1796–1800 (1989).

    PubMed  Google Scholar 

  155. Taylor IB: Genetics of ABA synthesis. In: Davies WJ, Jones HG (eds) Abscisic Acid Physiology and Biochemistry, pp. 23–37. BIOS Scientific Publishers, Oxford (1991).

    Google Scholar 

  156. Taylor IB, Linforth RST, Al-Naieb RJ, Bowman WR, Marples BA: The wilty tomato mutants flacca and sitiens are impaired in the oxidation of ABA-aldehyde to ABA. Plant Cell Environ 11: 739–745 (1988).

    Google Scholar 

  157. Thiel G, Blatt MR: Phosphatase antagonist okadaic acid inhibits steady state K+ currents in guard cells of Vicia faba. Plant J 5: 727–733 (1994).

    Google Scholar 

  158. Thiel G, MacRobbie EAC, Blatt MR: Membrane transport in stomatal guard cells: the importance of voltage control. J Membrane Biol 126: 1–18 (1992).

    Article  Google Scholar 

  159. Thomas TL: Gene expression during plant embryogenesis and germination: an overview. Plant Cell 5: 1401–1410 (1993).

    Article  PubMed  Google Scholar 

  160. Trewavas A: How do plant growth substances work? II. Plant Cell Environ 14: 1–12 (1991).

    Google Scholar 

  161. Trewavas AJ, Jones HG: An assessment of the role of ABA in plant development. In: Davies WJ, Jones HG (eds) Abscisic Acid: Physiology and Biochemistry, pp. 169–188. BIOS Scientific Publishers, Oxford (1991).

    Google Scholar 

  162. Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K: An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5: 1529–1539 (1993).

    Article  PubMed  Google Scholar 

  163. Vartanian N, Marcotte L, Giraudat J: Drought rhizogenesis in Arabidopsis thaliana. Differential responses of hormonal mutants. Plant Physiol 104: 761–767 (1994).

    PubMed  Google Scholar 

  164. Vilardell J, Martinez-Zapater JM, Goday A, Arenas C, Pagès M: Regulation of the rab17 gene promoter in transgenic Arabidopsis wild-type, ABA-deficient and ABA-insensitive mutants. Plant Mol Biol 24: 561–569 (1994).

    PubMed  Google Scholar 

  165. Walker-Simmons M, Kudrna DA, Warner RL: Reduced accumulation of ABA during water stress in a molybdenum cofactor mutant of barley. Plant Physiol 90: 728–733 (1989).

    Google Scholar 

  166. Walton DC: Biochemistry and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 31: 453–489 (1980).

    Google Scholar 

  167. Walton DC: Abscisic acid biosynthesis and metabolism. In: Davies PJ (ed) Plant Hormones and their Role in Plant Growth and Development, pp. 113–131. Kluwer Academic Publishers, Dordrecht (1988).

    Google Scholar 

  168. Wang T, Donkin M, Martin E: The physiology of a wilty pea: abscisic acid production under water stress. J Exp Bot 35: 1222–1232 (1984).

    Google Scholar 

  169. Williams B, Tsang A: A maize gene expressed during embryogenesis is abscisic acid-inducible and highly conserved. Plant Mol Biol 16: 919–923 (1991).

    PubMed  Google Scholar 

  170. Xu D, McElroy D, Thornburg RW, Wu R: Systemic induction of a potato pin2 promoter by wounding, methyl jasmonate, and abscisic acid in transgenic rice plants. Plant Mol Biol 22: 573–588 (1993).

    Article  PubMed  Google Scholar 

  171. Yamaguchi-Shinozaki K, Koizumi M, Urao S, Shinozaki K: Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein. Plant Cell Physiol 33: 217–224 (1992).

    Google Scholar 

  172. Yamaguchi-Shinozaki K, Shinozaki K: The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet 238: 17–25 (1993).

    PubMed  Google Scholar 

  173. Yamaguchi-Shinozaki K, Shinozaki K: Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236: 331–340 (1993).

    Article  PubMed  Google Scholar 

  174. Yamaguchi-Shinozaki K, Shinozaki K: A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251–264 (1994).

    Article  PubMed  Google Scholar 

  175. Zeevaart JAD, Creelman RA: Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol 39: 439–473 (1988).

    Article  Google Scholar 

  176. Zeevaart JAD, Rock CD, Fantauzzo F, Heath TG, Gate DA: Metabolism of ABA and its physiological implications. In: Davies WJ, Jones HG (eds) Abscisic Acid Physiology and Biochemistry, pp. 39–52. BIOS Scientific Publishers, Oxford (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giraudat, J., Parcy, F., Bertauche, N. et al. Current advances in abscisic acid action and signalling. Plant Mol Biol 26, 1557–1577 (1994). https://doi.org/10.1007/BF00016490

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00016490

Key words

Navigation