Skip to main content
Log in

Nutrient uptake in mycorrhizal symbiosis

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The role of mycorrhizal fungi in acquisition of mineral nutrients by host plants is examined for three groups of mycorrhizas. These are; the ectomycorrhizas (ECM), the ericoid mycorrhizas (EM), and the vesicular-arbuscular mycorrhizas (VAM). Mycorrhizal infection may affect the mineral nutrition of the host plant directly by enhancing plant growth through nutrient acquisition by the fungus, or indirectly by modifying transpiration rates and the composition of rhizosphere microflora.

A capacity for the external hyphae to take up and deliver nutrients to the plant has been demonstrated for the following nutrients and mycorrhizas; P (VAM, EM, ECM), NH4 + (VAM, EM, ECM), NO3 - (ECM), K (VAM, ECM), Ca (VAM, EM), SO4 2- (VAM), Cu (VAM), Zn (VAM) and Fe (EM). In experimental chambers, the external hyphae of VAM can deliver up to 80% of plant P, 25% of plant N, 10% of plant K, 25% of plant Zn and 60% of plant Cu. Knowledge of the role of mycorrhiza in the uptake of nutrients other than P and N is limited because definitive studies are few, especially for the ECM. Although further quantification is required, it is feasible that the external hyphae may provide a significant delivery system for N, K, Cu and Zn in addition to P in many soils. Proposals that ECM and VAM fungi contribute substantially to the Mg, B and Fe nutrition of the host plant have not been substantiated.

ECM and EM fungi produce ectoenzymes which provide host plants with the potential to access organic N and P forms that are normally unavailable to VAM fungi or to non mycorrhizal roots. The relative contribution of these nutrient sources requires quantification in the field.

Further basic research, including the quantification of nutrient uptake and transport by fungal hyphae in soil and regulation at the fungal-plant interface, is essential to support the selection and utilization of mycorrhizal fungi on a commercial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AbbottL K and RobsonA D 1985 Formation of external hyphae in soil by four species of vesicular-arbuscular mycorrhizal fungi. New Phytol. 99, 245–255.

    Article  Google Scholar 

  • AbuzinadahR A and ReadD J 1989 The role of proteins in the nitrogen nutrition of ectomycorrhizal plants IV. The utilization of peptides by birch (Betula pendula L) infected with different mycorrhizal fungi. New Phytol. 112, 55–60.

    Article  CAS  Google Scholar 

  • AhmadI, CarletonT J, MallochD W and HellebustJ.A. 1990 Nitrogen metabolism in the ectomycorrhizal fungus Laccaria bicolor (R. Mre.) Orton. New Phytol. 116, 431–441.

    Article  CAS  Google Scholar 

  • AmesR N, ReidC P P, PorterL K and CambardellaC 1983 Hyphal uptake and transport of nitrogen from two 15N labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol. 95, 381–396.

    Article  Google Scholar 

  • AzeonR and BareaJ M 1992 Nodulation, N2 fixation (15N) and N nutrition relationships in mycorrhizal or phosphateamended alfalfa plants. Symbiosis 12, 33–41.

    Google Scholar 

  • BaathE and SpokesJ 1989 The effect of added nitrogen and phosphorus on mycorrhizal growth response and infection in Allium schoenoprasum. Can. J. Bot. 67, 3227–3232.

    Google Scholar 

  • BajwaR and ReadD J 1985 The biology of mycorrhiza in the Ericaceae. IX. Peptides as nitrogen sources for the erecoid endophyte and for mycorrhizal and non-mycorrhizal plants. New Phytol. 101, 459–467.

    Article  CAS  Google Scholar 

  • BertaG, FusconiA, TrottaA and ScanneriniS 1990 Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytol. 114, 207–215.

    Article  Google Scholar 

  • BethlenfalvayG J and FransonR L 1989 Manganese toxicity alleviated by mycorrhizae in soybean. J. Plant Nutr. 12, 953–970.

    Article  CAS  Google Scholar 

  • BethlenfalvayG J, UlrichJ M and BrownM S 1985 Plant response to mycorrhizal fungi: host, endophyte, and soil effects. Soil Sci. Soc. Am. J. 49, 1164–1168.

    Article  Google Scholar 

  • BethlenfalvayG J, FransonR L, BrownM S and MiharaK L 1989 The Glycine-Glomus-Bradyrhizobium symbiosis. IX. Nutritional morphological and physiological responses of nodulated soybean to geographic isolates of the mycorrhizal fungus Glomus mosseae. Physiol. Plant 76, 226–232.

    Article  Google Scholar 

  • BethlenfalvayG J, Reyes-SolisM G, CamelS B and Ferrera-CerratoR 1991 Nutrient transfer between the root zones of soybean and maize plants connected by a common mycorrhizal mycelium. Physiol. Plant. 82, 423–432.

    Article  CAS  Google Scholar 

  • BolanN S 1991 A critical review of the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134, 189–207.

    Article  CAS  Google Scholar 

  • BolanN S, RobsonA D, BarrowN J and AylmoreL A G 1983 Specific activity of phosphorus in mycorrhizal and non-mycorrhizal plants in relation to the availability of phosphorus to plants. Soil Biol. Biochem. 16, 299–304.

    Article  Google Scholar 

  • BolanN S, RobsonA D and BarrowN J 1987 Effects of vesicular-arbuscular mycorrhiza on the availability of iron phosphates to plants. Plant Soil 22, 401–410.

    Article  Google Scholar 

  • BougherN L, GroveT S and MalajczukN 1990 Growth and phosphorus acquisition of karri (Eucalyptus diyersicolor F. Muell.) seedlings inoculated with ectomycorrhizal fungi in relation to phosphorus supply. New Phytol. 114, 77–85.

    Article  CAS  Google Scholar 

  • BrownM S, ThamsurakulS and BethlenfalvayG J 1988 The Glycine-Glomus-Bradyrhizobium symbiosis. IX. Phosphorus-use efficiency of CO2 and N2 fixation in mycorrhizal soybean. Physiol. Plant. 74, 159–163.

    Article  Google Scholar 

  • BrundrettM C and AbbottL K 1991 Roots of jarrah forest plants. I. Mycorrhizal associations of shrubs and herbaceous plants. Aust. J. Bot. 39, 445–457.

    Article  Google Scholar 

  • BrylaD R and KoideR T 1990 Role of mycorrhizal infection in the growth and reproduction of wild vs. cultivated plants. II. Eight wild accessions and two cultivars of Lycopersicon esculentum Mill. Oecologia 84, 82–92.

    Article  Google Scholar 

  • CairneyJ W G and AshfordA E 1989 Reducing activity at the root surface in Eucalyptus pilularis-Pisolithus tinctorius ectomycorrhizas. Aust. J. Plant Physiol. 16, 99–105.

    CAS  Google Scholar 

  • CairneyJ W G and AshfordA E 1991 Release of a reducing substance by the ectomycorrhizal fungi Pisolithus tinctorius and Paxillus involutus. Plant Soil 135, 147–150.

    Article  CAS  Google Scholar 

  • ChalotM, BrunA, KhalidA, DellB, RohR and BottonB 1990 Occurrence and distribution of aspartate aminotransferases in spruce and beech ectomycorrhizas. Can. J. Bot. 68, 1756–1762.

    CAS  Google Scholar 

  • ChalotM, StewartG R, BrunA, MartinF and BottonB 1991 Ammonium assimilation by spruce-Hebeloma sp. ectomycorrhizas. New Phytol. 119, 541–550.

    Article  CAS  Google Scholar 

  • CooperK M and TinkerP B 1978 Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. II. Uptake and translocation of phosphorus, zinc and sulphur. New Phytol. 81, 43–52.

    Article  CAS  Google Scholar 

  • CressW A, JohnsonG V and BartonL L 1986 The role of endomycorrhizal fungi in iron uptake by Hilaria jamesii. J. Plant Nutr. 2, 547–556.

    Google Scholar 

  • CromackK, SollinsP, CransteinW C, SpeidelK, ToddA W, SpycherG, ChingY-Li and ToddR L 1979 Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biol. Biochem 11, 463–468.

    Article  CAS  Google Scholar 

  • DaviesF TJr, PotterJ R and LindermanR G 1992 Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content. J. Plant Physiol. 132, 289–294.

    Google Scholar 

  • DellB, BottonB, MartinF and LeTaconF 1989 Glutamate dehydrogenases in ectomycorrhizas of spruce (Picea excelsa L) and beech (Fagus sylvatica L). New Phytol. 111, 683–692.

    Article  CAS  Google Scholar 

  • DennyH J and WilkinsD A 1987 Zinc tolerance in Betula spp. IV. The mechanism of ectomycorrhizal amelioration of zinc toxicity. New Phytol. 106, 545–553.

    CAS  Google Scholar 

  • DoddJ C, BurtonC C, BurnsR G and JeffriesP 1987 Phosphatase activity associated with the roots and the rhizosphere of plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol. 107, 163–171.

    Article  CAS  Google Scholar 

  • DoudsD DJr, JohnsonC R and KochK E 1988 Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis. Plant Physiol. 86, 491–496.

    PubMed  CAS  Google Scholar 

  • FinlayR D and ReadD J 1986 The structure and function of the vegetative mycelium of ectomycorrhizal plants. II. The up-take and distribution of phosphorus by mycelial strands in the connecting host plants. New Phytol. 103, 157–165.

    Article  Google Scholar 

  • FinlayR D, EkH, OdhamG and SöderströmB 1988 Mycelial uptake translocation and assimilation of nitrogen from 15N-labelled ammonium by Pinus sylvestris plants infected with four different ectomycorrhizal fungi. New Phytol. 110, 59–66.

    Article  Google Scholar 

  • FinlayR D, EkH, OdhamG and SöderströmB 1989 Uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium nitrate sources by intact ectomycorrhizal systems of Fagus sylvatica infected with Paxillus involutus. New Phytol. 113, 47–55.

    Article  CAS  Google Scholar 

  • FinlayR D, FrostegardA and SonnerfeldtA M 1992 Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex. Loud. New Phytol. 120, 105–115.

    Article  Google Scholar 

  • GeorgeE, HausslerK U, VetterleinD, GorgusE and MarschnerH 1992 Water and nutrient translocation by hyphae of Glomus mosseae. Can. J. Bot. 70, 2130–2137.

    Google Scholar 

  • GreyW E 1991 Influence of temperature on colonization of spring barleys by vesicular arbuscular mycorrhizal fungi. Plant Soil 137, 181–190.

    Article  Google Scholar 

  • GriffithR P, CastellanoM A and CaldwellB A 1991 Hyphal mats formed by two ectomycorrhizal fungi and their association with Douglas-fir seedlings. A case study. Plant Soil 134, 255–259.

    Article  Google Scholar 

  • Hilger A B and KrauseH H 1989 Growth characteristics of Laccaria laccata and Paxillus involutus in liquid culture media with inorganic and organic phosphorus sources. Can. J. Bot. 67, 1782–1789.

    CAS  Google Scholar 

  • HoI 1989 Acid phosphatase, alkaline phosphatase, and nitrate reductase activity of selected ectomycorrhizal fungi. Can. J. Bot. 67, 750–753.

    CAS  Google Scholar 

  • HogbergP 1989 Growth and nitrogen inflow rates in mycorrhizal and non-mycorrhizal seedlings of Pinus sylvestris. Forest Ecol. Manag. 28, 7–17.

    Article  Google Scholar 

  • JakobsenI and RosendahlL 1990 Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol. 115, 77–83.

    Article  Google Scholar 

  • JakobsenI, AbbottL K and RobsonA D 1992 External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L I. Spread of hyphae and phosphorus inflow into roots. New Phytol. 120, 371–380.

    Article  CAS  Google Scholar 

  • JonesM D, DurallD M and TinkerP B 1990 Phosphorus relationships and production of extramatrical hyphae by two types of willow ectomycorrhizas at different soil phosphorus levels. New Phytol. 115, 259–267.

    Article  CAS  Google Scholar 

  • JongbloedR H, ClementJ M A M and Borst-PauwelsG W F H 1991 Kinetics of NH4 + and K+ uptake by ectomycorrhizal fungi. Effect of NH4 + on K+ uptake. Physiol. Plant 83, 437–432.

    Article  Google Scholar 

  • JungkA and ClaassenN 1989 Availability in soil and acquisition by plants as the basis for phosphorus and potassium supply to plants. Z Pflanzenernaehr. Bodenkd. 152, 151–157.

    CAS  Google Scholar 

  • KammerbauerH, AgererR and SandermannHJr 1989 Studies on ectomycorrhiza XXII. Mycorrhizal rhizomorphs of Telephora terrestris and Pisolithus tinctorius in association with Norway spruce (Picea abies): formation in vitro and translocation of phosphate. Trees 3, 78–84.

    Article  Google Scholar 

  • KoideR 1991 Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol. 117, 365–386.

    Article  CAS  Google Scholar 

  • KothariS K, MarschnerH and RömheldV 1990a Direct and indirect effects of VA mycorrhiza and rhizosphere microorganisms on mineral nutrient acquisition by maize (Zea mays L) in-a calcareous soil. New Phytol. 116, 637–645.

    Article  CAS  Google Scholar 

  • KothariS K, MarschnerH and GeorgeE 1990b Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytol. 116, 303–311.

    Article  Google Scholar 

  • KothariS K, MarschnerH and RömheldV 1991a Contribution of VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcareous soil. Plant Soil 131, 177–185.

    Article  CAS  Google Scholar 

  • KothariS K, MarschnerH and RömheldV 1991b Effect of a vesicular-arbuscular mycorrhizal fungus and rhizosphere microorganisms on managenese reduction in the rhizosphere and manganese concentrations in maize (Zea mays L). New Phytol. 117, 649–655.

    Article  CAS  Google Scholar 

  • LambertD H and WeidensaulT C 1991 Element uptake by mycorrhizal soybean from sewage-sludge-treated soil. Soil Sci. Am. J. 55, 393–398.

    Article  CAS  Google Scholar 

  • LapeyrieF 1990 The role of ectomycorrhizal fungi in calcareous soil tolerance by ‘symbiocalcicole’ woody plants. Ann. Sci. For. 21, 579–589.

    Google Scholar 

  • LapeyrieF, PicattoC, GerardJ and DexheimerJ 1990 T.E.M. study of intracellular and extracellular calcium oxalate accumulation by ectomycorrhizal fungi in pure culture or in association with Eucalyptus seedlings. Symbiosis 2, 163–166.

    Google Scholar 

  • LeakeJ R and ReadD J 1989 The biology of mycorrhiza in the Ericaceae XV. The effect of mycorrhizal infection on calcium uptake by Calluna vulgris (L) Hull. New Phytol. 113, 535–544.

    Article  CAS  Google Scholar 

  • LeakeJ R and ReadD J 1990 Proteinase activity in mycorrhizal fungi I. The effect of extracellular pH on the production and activity of proteinase by ericoid endophytes from soils of contrasted pH. New Phytol. 115, 243–250.

    Article  CAS  Google Scholar 

  • LiX-L, GeorgeE and MarschnerH 1991a Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 136, 41–48.

    Google Scholar 

  • LiX-L, GeorgeE and MarschnerH 1991b Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytol. 119, 397–404.

    Article  CAS  Google Scholar 

  • LiX-L, MarschnerH and GeorgeE 1991c Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 136, 49–57.

    CAS  Google Scholar 

  • LindermanR G 1988 Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78, 366–371.

    Google Scholar 

  • MaijalaP, FagerstedtK F and RaudaskoskiM 1991 Detection of extracellular cellulolytic and proteolytic activity in ectomycorrhizal fungi and Heterobasidion annosum (Fr.) Bref. New Phytol. 117, 643–648.

    Article  CAS  Google Scholar 

  • MartinF, StewartG, GenetetI and LeTaconF 1986 Assimilation of 15NH4 + by beech (Fagus sylvatica L) ectomycorrhizas. New Phytol. 102, 85–94.

    Article  CAS  Google Scholar 

  • MartinF, StewartG R, GenetetI and MourotB 1988 The involvement of glutamate dehydrogenase and glutamine synthetase in ammonia assimilation by the rapidly growing ectomycorrhizal ascomycete, Conococcum geophilum Fr. New Phytol. 110, 541–550.

    Article  CAS  Google Scholar 

  • MitchellR J, H EGarrett, CoxG S and AtalayA 1990 Boron and ectomycorrhizal influences on mineral nutrition of container-grown Pinus ehinata Mill. J. Plant Nutr. 13, 1555–1574.

    CAS  Google Scholar 

  • NewmanE I, EasonW R, EissenstatD M and RamosM I R F 1992 Interactions between plants: the role of mycorrhizae. Mycorrhiza 1, 47–53.

    Article  Google Scholar 

  • PerrinR 1990 Interactions between mycorrhizae and diseases caused by soil-borne fungi. Soil Use Manag. 6, 189–195.

    Google Scholar 

  • PaulitzT C and LindermanR G 1989 Interactions between fluorescent pseudomonads and VA mycorrhizal fungi. New Phytol. 113, 37–45.

    Article  Google Scholar 

  • PicciniD, OcampoJ A and BedmarE J 1988 Possible influence of Rhizobium on VA mycorrhiza metabolic activity in double symbiosis of alfalfa plants (Medicago sativa L) grown in a pot experiment. Biol. Fert. Soils 6, 65–67.

    Article  Google Scholar 

  • PowellP E, SzaniszloP J, ClineG R and ReidC P P 1982 Hydroxamate siderophores in the iron nutrition of plants. J. Plant Nutr. 5, 653–573.

    CAS  Google Scholar 

  • RajuP S, ClarkR B, EllisJ R and MaranvilleJ W 1990 Mineral uptake and growth of sorghum colonized with VA mycorrhiza at varied soil phosphorus levels. J. Plant Nutr. 13, 843–859.

    CAS  Google Scholar 

  • ReadD J 1984 The structure and function of the vegetative mycelium of mycorrhizal roots. In The Ecology and Physiology of the Fungal Mycelium. Ed. D HJennings and A D MRayner. pp 215–240. Cambridge University Press. Cambridge.

    Google Scholar 

  • RhodesL H and GerdemannJ W 1978 Translocation of calcium and phosphate by external hyphae of vesicular-arbuscular mycorrhizae. Soil Sci. 126, 125–126.

    CAS  Google Scholar 

  • RobsonA D, O'HaraG W and AbbottL K 1981 Involvement of phosphorus in nitrogen fixation by subterranean clover (Trifolium subterraneum L). Aust. J. Plant Physiol. 8, 427–436.

    Article  CAS  Google Scholar 

  • RygiewiczP T and BledsoeC S 1984 Mycorrhizal effects on potassium fluxes by northwest coniferous seedlings. Plant Physiol. 76, 918–923.

    PubMed  CAS  Google Scholar 

  • SandersF E and TinkerP B 1973 Phosphate inflow into mycorrhizal roots. Pestic. Sci. 4, 385–395.

    CAS  Google Scholar 

  • ScherommP, PlassardC and SalsacL 1990 Nitrate nutrition of maritime pine (Pinus pinaster Soland in Ait.) ectomycorrhizal with Hebeloma cylindrosporum Romagn. New Phytol. 114, 93–89.

    Article  CAS  Google Scholar 

  • SchulerR and HaselwandterK 1988 Hydroxamate siderophore production by ericoid mycorrhizal fungi. J. Plant Nutr. 11, 907–913.

    CAS  Google Scholar 

  • SeciliaJ and BagyarajD J 1987 Bacteria and actinomycetes associated with pot cultures of vesicular-arbuscular mycorrhizas. Can. J. Bot. 33, 1069–1073.

    Google Scholar 

  • ShawG, LeakeJ R, BakerA J M and ReadD J 1990 The biology of mycorrhiza in the Ericaceae. XVII. The role of mycorrhizal infection in the regulation of iron uptake by ericaceous plants. New Phytol. 115, 251–258.

    Article  CAS  Google Scholar 

  • SieverdingE and ToroS 1988 Influence of soil water regime on VA mycorrhiza. V. Performance of different VAM fungal species with cassava. J. Agron. Crop Sci. 161, 322–332.

    Google Scholar 

  • StoneE L 1990 Boron deficiency and excess in forest trees: A review. For. Ecol. Manag. 37, 49–75.

    Article  Google Scholar 

  • StrakerC J and MitchellD T 1986 The activity and characterization of acid phosphatases in endomycorrhizal fungi of the Ericaceae. New Phytol. 104, 243–256.

    Article  CAS  Google Scholar 

  • SylviaD 1988 Activity of external hyphae of vesicular-arbuscular mycorrhizal fungi. Soil Biol. Biochem. 20, 39–43.

    Article  Google Scholar 

  • VierheiligH and OcampoJ A 1991 Receptivity of various wheat cultivars to infection by VA-mycorrhizal fungus influenced by inoculum potential and the relation of VAM-effectiveness to succinic dehydrogenase activity of the mycelium in the root. Plant Soil 133, 291–296.

    Article  CAS  Google Scholar 

  • VogtK A, PublicoverD A and VogtD J 1991 A critique of the role of ectomycorrhizas in forest ecology. Agric. Ecos. Environ. 35, 171–190.

    Article  Google Scholar 

  • WhiteJ A and BrownM F 1979 Ultrastructural and X-ray analysis of phosphorus granules in a vesicular-arbuscular mycorrhizal fungus. Can. J. Bot. 57, 2812–2818.

    CAS  Google Scholar 

  • WilkinsD A 1991 The influence of sheathing (ecto-) mycorrhizas of trees on the uptake and toxicity of metals. Agric. Ecos. Environ. 35, 145–260.

    Article  Google Scholar 

  • ZhuH, GuoD and DancikB P 1990 Purification and characterization of an extracellular acid proteinase from the ectomycorrhizal fungus Hebeloma crustuliniforme. Appl. Environ. Microbiol. 56, 837–843.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marschner, H., Dell, B. Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159, 89–102 (1994). https://doi.org/10.1007/BF00000098

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00000098

Key words

Navigation