Skip to main content
Log in

Recovery of the photosynthetic capacity of Campomanesia adamantium (Myrtaceae) after water deficit

  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Campomanesia adamantinum O. Berg, a plant native to Cerrado, has the potential to adapt to a stressful environment because it grows in a region with a long dry period and prone to frequent fires, leading to water deficit. Thus, this study aimed at assessing the gas exchange capacity of C. adamantium seedlings under water deficit conditions and its potential to recover after rewatering. The seedlings were grown under two different conditions: group 1 was the control, in which plants were grown under well-moisturized conditions with 70 % water-holding capacity, and group 2, in which plants were grown with no irrigation and precipitation and were rewatered when the photosynthetic rate reached levels close to zero. The plants subjected to water deficit conditions demonstrated markedly decreased stomatal conductance and transpiration from 23rd up to the 31st day; at the 31st day, the photosynthetic rate, water-use efficiency, and Rubisco carboxylation activity reached levels of almost zero, but when the plants were rewatered, the metabolism recovered rapidly. The internal carbon concentration values were not influenced by the variations in stomatal conductance. In general, during most of the evaluated periods, the chlorophyll index of C. adamantium did not change when irrigation was suspended, highlighting the potential of this species to be used for the recovery of degraded areas in the Cerrado domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1–4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asharaf M, Harris PJC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51:163–190. doi:10.1007/s11099-013-0021-6

    Article  Google Scholar 

  • Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Campanello P, Scholz FG (2005) Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plants in Neotropical savanna trees. Trees 19:296–304. doi:10.1007/s00468-004-0391-2

    Article  Google Scholar 

  • Calbo MER (1996) Trocas gasosas do açaí e buriti sob estresse de déficit de água e crescimento, porosidade e trocas gasosas do buriti sob inundação. Thesis, Universidade Federal de São Carlos, São Carlos

  • Chaves MMJ, Costa M, Saibo NJM (2011) Recent advances in photosynthesis under drought and salinity. Adv Bot Res 57:49–104. doi:10.1016/B978-0-12-387692-8.00003-5

    Article  CAS  Google Scholar 

  • Dalmolin ÂC (2013) Relações hídricas, trocas gasosas e anatomia foliar de Vochysia divergens Pohl. espécie invasora do Pantanal Mato Grossense. Thesis, Universidade Federal de Mato Grosso, Cuiabá

  • Din J, Khan SU, Ali I, Gurmani AR (2011) Physiological and agronomic response of canola varieties to drought stress. J Anim Plant Sci 21:78–82. http://thejaps.org.pk/docs/21(1)2011/PHYSIOLOGICAL.pdf

  • Ferreira LC, Grabe-Guimarães A, Ca Paula, Marcela CPM, Guimarães RG, Rezende SA, Souza Filho JD, Saúde-Guimarães DA (2013) Anti-inflammatory and antinociceptive activities of Campomanesia adamantium. J Ethnopharmacol 145:100–108. doi:10.1016/j.jep.2012.10.037

    Article  PubMed  Google Scholar 

  • Guarim Neto G, Morais RG (2003) Recursos medicinais de espécies do Cerrado de Mato Grosso: um estudo bibliográfico. Acta Bot Bras 17:561–584. doi:10.1590/S0102-33062003000400009

    Article  Google Scholar 

  • Köppen WP (1948) Climatologia: con un estudio de los climas de la tierra. Fondo de Cultura Económica, México

    Google Scholar 

  • Larcher W (2004) Ecofisiologia Vegetal. Rima, São Carlos

    Google Scholar 

  • Martinazzo EG, Ramm A, Bacarin MA (2012) The chlorophyll a fluorescence as an indicator of the temperature stress in the leaves of Prunus persica. Braz J Plant Physiol 24:237–246. doi:10.1590/S1677-04202013005000001

    Article  CAS  Google Scholar 

  • Martins MO, Nogueira RJM, Neto ADA, Santos MG (2010) Crescimento de plantas jovens de nim-indiano (Azadirachta indica A. Juss. - Meliaceae) sob diferentes regimes hídricos. Rev Árvore 34:771–779. doi:10.1590/S0100-67622010000500002

    Article  Google Scholar 

  • Martins SV, Miranda Neto A, Ribeiro TM (2012) Uma abordagem sobre diversidade e técnicas de restauração ecológica. In: Martins SV (ed) Restauração ecológica de ecossistemas degradados, 1edn. UFV, Viçosa, pp 17–40

    Google Scholar 

  • Medrano H, Escalona JM, Bota J, Gulías J, Flexas J (2002) Regulation of photosynthesis of C3 plants in response to progressive drought: the interest of stomatal conductance as a reference parameter. Ann Bot 89:895–905. doi:10.1093/aob/mcf079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nascimento, JL (2009) Crescimento e assimilação de carbono em plantas jovens de Attalea funifera Mart. submetidas ao sombreamento e ao estresse hídrico, Dissertation, Universidade Estadual de Santa Cruz, Santa Cruz

  • Oliveira Filho AT, Ratter JA (2002) Vegetation physiognomies and woody flora of the Cerrado Biome. In: Oliveira PS, Marquis RJ (eds) The cerrados of Brazil. Columbia University Press, New York, pp 121–140

    Google Scholar 

  • Oliveira MAJ, Bovi MLA, Machado EC, Gomes MMA, Habermann G, Rodrigues JD (2002) Fotossíntese, condutância estomática e transpiração em pupunheira sob deficiência hídrica. Sci Agric 59:59–63. doi:10.1590/S0103-90162002000100008

    Article  Google Scholar 

  • Parry MAJ, Androlojc PJ, Khan S, Lea PJ, Keys AJ (2002) Rubisco activity: effects of drought stress. Ann Bot 89:833–939. doi:10.1093/aob/mcf103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pompelli MF, Barata-Luís R, Vitorino HS, Gonçalves ER, Rolim EV, Santos MG, Almeida-Cortez JS, Ferreira VM, Lemos EEP, Endres L (2010) Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery. Biomass Bioenergy 34:1207–1215. doi:10.1016/j.biombioe.2010.03.011

    Article  CAS  Google Scholar 

  • Porto AC, Gulias APSM (2006) Gabiroba. In: Vieira RF, Costa TSA, Silva DB, Ferreira FR, Sano SM (eds) Frutas nativas da região Centro-Oeste do Brasil, 1edn. Embrapa Recursos Genéticos e Biotecnologia, Brasília, pp 164–172

    Google Scholar 

  • Sapeta H, Costa JM, Lourenco T, Maroco J, Van Der Linde P, Oliveira MM (2013) Drought stress response in Jatropha curcas: Growth and physiology. Environ Exp Bot 85:76–84. doi:10.1016/j.envexpbot.2012.08.012

    Article  CAS  Google Scholar 

  • Scalon SPQ, Kodama FM, Dresch DM, Mussury RM, Pereira ZV (2015) Gas exchange and photosynthetic activity in Hancornia speciosa Gomes seedlings under water deficit conditions and during rehydration. Biosci J 31:1124–1132. doi:10.14393/BJ-v31n4a2015-26088

    Article  Google Scholar 

  • Silva EN, Ferreira-Silva SL, Fontenele AV, Ribeiro RV, Viégas RA, Silveira JAG (2010) Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. J Plant Physiol 167:1157–1164. doi:10.1016/j.jplph.2010.03.005

    Article  CAS  PubMed  Google Scholar 

  • Sobanski N, Marques CMM (2014) Effects of soil characteristics and exotic grass cover on the forest restoration of the Atlantic Forest. J Nat Conserv 22:217–222. doi:10.1016/j.jnc.2014.01.001

    Article  Google Scholar 

  • Souza CC, Oliveira FA, Silva IF, Amorim Neto MS (2000) Avaliação de métodos de determinação de água disponível e manejo da irrigação em terra roxa sob cultivo de algodoeiro herbáceo. Rev Bras Eng Agric Ambient 4:338–342. doi:10.1590/S1415-43662000000300006

    Article  Google Scholar 

  • Souza JC, Piccinelli AC, Aquino DFS, Souza VV, Schmitz WO, Traesel GK, Cardoso CAL, Kassuya CAL, Arena AC (2014) Toxicological analysis and antihyperalgesic, antidepressant, and anti-inflammatory effects of Campomanesia adamantium fruit barks. Nutr Neurosci 17:001–009. doi:10.1179/1476830514Y.0000000145

    Article  Google Scholar 

  • Taiz L, Zeiger E (2013) Fisiologia vegetal. Artmed, Porto Alegre

    Google Scholar 

  • Vallilo MI, Lamardo LCA, Gaberlotti ML, Oliveira E, Moreno PRH (2006) Composição química dos frutos de Campomanesia adamantium (Cambessédes) O. Berg. Ciênc Tecnol Aliment 26:805–810. doi:10.1590/S0101-20612006000400015

    Article  CAS  Google Scholar 

  • Veiga EB, Habermann G (2013) Instantaneously measured traits may detect non-plastic ecophysiological performances in response to drought, explaining distributions of Styrax species in the Cerrado. Trees 27:1737–1745. doi:10.1007/s00468-013-0919-4

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support by FUNDECT-MS (Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana de Paula Quintão Scalon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junglos, F.S., Junglos, M.S., Dresch, D.M. et al. Recovery of the photosynthetic capacity of Campomanesia adamantium (Myrtaceae) after water deficit. Braz. J. Bot 39, 541–546 (2016). https://doi.org/10.1007/s40415-016-0275-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-016-0275-x

Keywords

Navigation