Skip to main content
Log in

Pesticide transfer models in crop and watershed systems: a review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Pesticides are now occurring worldwide in almost all water resources, thus threatening the health of humans and other life. As a consequence, there is a strong social demand for designing safe cropping systems with less or no hazardous pesticides. Safe cropping systems can be designed now using pesticide transfer models. These models are mathematical tools that allow to predict the flow and concentration of pesticides in a field or a watershed. Here, we review the effects of agricultural practices on runoff, leaching, erosion, and drift from eight watershed models and nine field models. Our main findings are the following: (1) though models claim they account for practices, their effects cannot be represented. We present a method and four practice levels to assess the effects of practices in models, using tillage as an example. (2) The conceptual structure of the model highly influences the predicted distribution and transfer of pesticides. For instance, the pesticide levels remaining on the soil surface after plowing ranges from 0 % of the dose applied for the MIKE SHE–DAISY model to 100 % for GLEAMS, annAGNPS, SoilFug, and PestLCI. Only the Root Zone Water Quality Model (RZWQM) simulates pesticide interception by mulch during pesticide application. (3) Models should better take into account mulching, e.g., plastic, crop residues and associated crops, and other innovative practices. (4) A change in scale is needed for drift in watershed models. Here, topological watershed representations are the most promising way for upscaling the effects of practices. (5) Non-conservative calculations of pesticide interception by watershed mitigation structures (SWAT) should be carefully checked because these calculations underestimate the risk of pollution at the outlet. How models simulate practices will no longer be a secret for model users who apply our methodology and recommendations when selecting a model. We provide recommendations for improving tools to assess practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott MB, Bathurst JC, Cunge JA, O’Connell PE, Rasmussen J (1986a) An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 1: history and philosophy of a physically-based, distributed modelling system. J Hydrol 87:45–59. doi:10.1016/0022-1694(86)90114-9

    Google Scholar 

  • Abbott MB, Bathurst JC, Cunge JA, O’Connell PE, Rasmussen J (1986b) An introduction to the European Hydrological System—Systeme Hydrologique Europeen, “SHE”, 2: structure of a physically-based, distributed modelling system. J Hydrol 87:61–77. doi:10.1016/0022-1694(86)90115-0

    Google Scholar 

  • Abrahamsen P, Hansen S (2000) Daisy: an open soil–crop–atmosphere system model. Environ Model Softw 15:313–330. doi:10.1016/S1364-8152(00)00003-7

    Google Scholar 

  • Ahuja L, Rojas KW, Hanson JD, Shaffer MJ, Ma L (2000) Root Zone Water Quality Model: modelling management effects on water quality and crop production. Water Resources, Littleton

    Google Scholar 

  • All JN, Dutcher JD (1977) Subsurface and surface insecticide applications to control subterranean larvae of the grape root borer. J Econ Entomol 70:649–652

    CAS  Google Scholar 

  • Alletto L, Coquet Y, Benoit P, Heddadj D, Barriuso E (2010) Tillage management effects on pesticide fate in soils. A review. Agron Sustain Dev 30:367–400. doi:10.1051/agro/2009018

    CAS  Google Scholar 

  • Altieri MA (1995) Agroecology: the science of sustainable agriculture. Westview, Boulder

    Google Scholar 

  • Altieri MA, Nicholls CI (2000) Applying agroecological concepts to development of ecologically based pest management strategies. In: National Research Council (ed) Professional societies and ecologically based pest management: proceedings of a workshop. National Academies, Washington, DC, pp 14–19

    Google Scholar 

  • Antonious GF, Byers ME (1997) Fate and movement of endosulfan under field conditions. Environ Toxicol Chem 16:644–649. doi:10.1002/etc.5620160407

    CAS  Google Scholar 

  • Arabi M, Govindaraju RS, Hantush MM (2007) A probabilistic approach for analysis of uncertainty in the evaluation of watershed management practices. J Hydrol 333:459–471. doi:10.1016/j.jhydrol.2006.09.012

    Google Scholar 

  • Arabi M, Frankenberger JR, Engel BA, Arnold JG (2008) Representation of agricultural conservation practices with SWAT. Hydrol Process 22:3042–3055. doi:10.1002/hyp.6890

    Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: model development. J Am Water Resour Assoc 34:73–89. doi:10.1111/j.1752-1688.1998.tb05961.x

    CAS  Google Scholar 

  • Arnold JG, Kiniry JR, Srinivasan R, Williams JR, Haney EB, Neitsch SL (2011) Soil and Water Assessment Tool—input/output file documentation—version 2009. Texas Water Resources Institute, College Station

    Google Scholar 

  • Barling R, Moore I (1994) Role of buffer strips in management of waterway pollution: a review. Environ Manag 18:543–558. doi:10.1007/BF02400858

    Google Scholar 

  • Barra R, Vighi M, Di Guardo A (1995) Prediction of surface water input of chloridazon and chlorpyrifos from an agricultural watershed in Chile. Chemosphere 30:485–500. doi:10.1016/0045-6535(94)00412-N

    CAS  Google Scholar 

  • Barra R, Vighi M, Maffioli G, Di Guardo A, Ferrario P (2000) Coupling SoilFug model and GIS for predicting pesticide pollution of surface water at watershed level. Environ Sci Technol 34:4425–4433. doi:10.1021/es000986c

    CAS  Google Scholar 

  • Barreteau O, Richard-Ferroudji A, Garin P (2008) Des outils et méthodes en appui à la gestion de l’eau par bassin versant. Houille Blanche 6:48–55. doi:10.1051/lhb:2008071

    Google Scholar 

  • Barriuso E (2004) Estimation des risques environnementaux des pesticides. INRA Editions, Paris

    Google Scholar 

  • Bartley R, Roth CH, Ludwig J, McJannet D, Liedloff A, Corfield J, Hawdon A, Abbott B (2006) Runoff and erosion from Australia’s tropical semi-arid rangelands: influence of ground cover for differing space and time scales. Hydrol Process 20:3317–3333. doi:10.1002/hyp.6334

    Google Scholar 

  • Bathurst JC (1986) Sensitivity analysis of the Systeme Hydrologique Europeen for an upland catchment. J Hydrol 87:103–123. doi:10.1016/0022-1694(86)90117-4

    Google Scholar 

  • Beckers E, Degré A (2011) Revue bibliographique: La prise en compte des transferts horizontaux dans les modèles hydrologiques. Biotechnol Agron Soc Environ 15:143–151

    Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69

    Google Scholar 

  • Biarnes A, Colin F (2006) Methodology to assess the hydrological impact of weed control practices with a view to management of Mediterranean winegrowing catchments. Int J Sust Dev 9:161–179. doi:10.1504/IJSD.2006.011639

    Google Scholar 

  • Bicknell BR, Imhoff JC, Kittle JL Jr, Donigian AS Jr, Johanson RC, Barnwell TO (1996) Hydrological Simulation Program—Fortran user’s manual for release 11. United States Environmental Protection Agency, USA

    Google Scholar 

  • Bingner RL, Theurer FD, Yuan Y (2011) AnnAGNPS technical processes documentation version 5.2 DRAFT. United States Department of Agriculture. ftp://199.133.90.201/pub/outgoing/AGNPS/AGNPS_Web_Files/pdf_files/Technical_Documentation.pdf. Accessed 17 Mar 2013

  • Birkved M, Hauschild MZ (2006) PestLCI—a model for estimating field emissions of pesticides in agricultural LCA. Ecol Model 198:433–451. doi:10.1016/j.ecolmodel.2006.05.035

    Google Scholar 

  • Blanchard PE, Lerch RN (2000) Watershed vulnerability to losses of agricultural chemicals: interactions of chemistry, hydrology, and land-use. Environ Sci Technol 34:3315–3322. doi:10.1021/es991115+

    Google Scholar 

  • Bockstaller C, Guichard L, Makowski D, Aveline A, Girardin P, Plantureux S (2008) Agri-environmental indicators to assess cropping and farming systems. A review. Agron Sustain Dev 28:139–149. doi:10.1051/agro:2007052

    Google Scholar 

  • Borah DK, Bera M (2003) Watershed-scale hydrologic and nonpoint-source pollution models: review of mathematical bases. Trans ASAE 46:1553–1566

    Google Scholar 

  • Borah DK, Bera M (2004) Watershed-scale hydrologic and nonpoint-source pollution models: review of applications. Trans ASAE 47:789–803

    CAS  Google Scholar 

  • Brisson N, Launay M, Mary B, Beaudoin N (2009) Conceptual basis, formalisations and parameterization of the STICS crop model. Editions Quae, Paris

    Google Scholar 

  • Cabidoche YM, Lesueur-Jannoyer M (2012) Contamination of harvested organs in root crops grown on chlordecone-polluted soils. Pedosphere 22:562–571. doi:10.1016/S1002-0160(12)60041-1

    CAS  Google Scholar 

  • Calvet R, Barriuso E, Benoit P, Charnay MP, Coquet Y (2005) Les pesticides dans le sol. Conséquences agronomiques et environnementales. France Agricole Editions, Paris

    Google Scholar 

  • Campbell NS, D’Arcy B, Frost A, Novotny V, Sansom A (2004) Diffuse pollution: an introduction to the problems and solutions. IWA, London

    Google Scholar 

  • Capel PD, Larson SJ, Winterstein TA (2001) The behaviour of 39 pesticides in surface waters as a function of scale. Hydrol Process 15:1251–1269. doi:10.1002/hyp.212

    Google Scholar 

  • Carluer N, Giannone G, Bazin PH, Cherif R, Gril JJ (2008) Vers un outil de dimensionnement des dispositifs enherbés pour limiter les flux de phytosanitaires transférés par ruissellement—Tests de scénarios. Ingénierie 55–56:61–77

    Google Scholar 

  • Carof M, de Tourdonnet S, Saulas P, Floch DL, Roger-Estrade J (2007) Undersowing wheat with different living mulches in a no-till system. I. Yield analysis. Agron Sustain Dev 27:347–356. doi:10.1051/agro:2007016

    Google Scholar 

  • Carsel RF, Mulkey LA, Lorber MN, Baskin LB (1985) The Pesticide Root Zone Model (PRZM): a procedure for evaluating pesticide leaching threats to groundwater. Ecol Model 30:49–69. doi:10.1016/0304-3800(85)90036-5

    CAS  Google Scholar 

  • Cerdan O, Le Bissonnais Y, Govers G, Lecomte V, van Oost K, Couturier A, King C, Dubreuil N (2004) Scale effect on runoff from experimental plots to catchments in agricultural areas in Normandy. J Hydrol 299:4–14. doi:10.1016/j.jhydrol.2004.02.017

    Google Scholar 

  • Chapman R, Stranger JW (1992) Horticultural pesticide residues in water: a review of the potential for water contamination by pesticides used in the vegetable industry in Victoria. Department of Food and Agriculture, East Melbourne

    Google Scholar 

  • Charlier JB (2007) Fonctionnement et modélisation hydrologique d’un petit bassin versant cultivé en milieu volcanique tropical. Ph.D. thesis, Université Montpellier II

  • Charlier J-B, Cattan P, Voltz M, Moussa R (2009) Transport of a nematicide in surface and groundwaters in a tropical volcanic catchment. J Environ Qual 38:1031–1041. doi:10.2134/jeq2008.0355

    CAS  PubMed  Google Scholar 

  • Cresswell HP, Painter DJ, Cameron KC (1993) Tillage and water content effects on surface soil hydraulic properties and shortwave albedo. Soil Sci Soc Am J 57:816–824. doi:10.2136/sssaj1993.03615995005700030031x

    Google Scholar 

  • Daam MA, den Brink PJ (2009) Implications of differences between temperate and tropical freshwater ecosystems for the ecological risk assessment of pesticides. Ecotoxicology 19:24–37. doi:10.1007/s10646-009-0402-6

    PubMed  Google Scholar 

  • Dabney SM (1998) Cover crop impacts on watershed hydrology. J Soil Water Conserv 53:207–213

    Google Scholar 

  • de Bruyn B, Freissinet C, Vauclin M (2006) An indice for pesticide potential vulnerability of surface waters: assessment on the Leysse catchment (Savoie). Houille Blanche 2:106–112. doi:10.1051/lhb:200602014

    Google Scholar 

  • de Schampheleire M, Nuyttens D, Dekeyser D, Verboven P, Spanoghe P (2008) Interception of spray drift by border structures. Part 2: field experiments. Commun Agric Appl Biol Sci 73:723–727

    PubMed  Google Scholar 

  • Desneux N, Decourtye A, Delpuech J-M (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106. doi:10.1146/annurev.ento.52.110405.091440

    CAS  PubMed  Google Scholar 

  • Devillers J, Farret R, Girardin P, Rivière JL, Soulas G (2005) Indicateurs pour évaluer les risques liés à l’utilisation des pesticides, Lavoisier. Tec et Doc, Paris

    Google Scholar 

  • DHI (2007a) MIKE SHE user manual. Volume 1: user guide. DHI Water & Environment, Hørsholm

  • DHI (2007b) MIKE SHE user manual. Volume 2: reference guide. DHI Water & Environment, Hørsholm

  • di Guardo A, Calamari D, Zanin G, Consalter A, Mackay D (1994) A fugacity model of pesticide runoff to surface water: development and validation. Chemosphere 28:511–531. doi:10.1016/0045-6535(94)90295-X

    Google Scholar 

  • Dietrich AM, Gallagher DL (2002) Fate and environmental impact of pesticides in plastic mulch production runoff: field and laboratory studies. J Agric Food Chem 50:4409–4416. doi:10.1021/jf0107454

    CAS  PubMed  Google Scholar 

  • Donigian AS, Bicknell BR, Imhoff JC (1995) Hydrological Simulation Program—Fortran (HSPF). In: Singh VP (ed) Computer models of watershed hydrology. Water Resources, Littleton, pp 395–442

    Google Scholar 

  • Dubus IG, Surdyk N (2006) State-of-the-art. Review on pesticide fate models and environmental indicators. Report DL#4 of the FP6 EU-funded FOOTPRINT project. http://www.eu-footprint.org/downloads/FOOTPRINT_DL4.pdf. Accessed 16 Mar 2013

  • Dusek J, Ray C, Alavi G, Vogel T, Sanda M (2010) Effect of plastic mulch on water flow and herbicide transport in soil cultivated with pineapple crop: a modeling study. Agric Water Manag 97:1637–1645, doi: 16/j.agwat.2010.05.019

    Google Scholar 

  • Ellis MCB, Miller PCH (2010) The Silsoe Spray Drift Model: a model of spray drift for the assessment of non-target exposures to pesticides. Biosyst Eng 107:169–177. doi:10.1016/j.biosystemseng.2010.09.003

    Google Scholar 

  • Farlin J, Gallé T, Bayerle M, Pittois D, Braun C, El Khabbaz H, Elsner M, Maloszewski P (2013) Predicting pesticide attenuation in a fractured aquifer using lumped-parameter models. Groundwater 51:276–285. doi:10.1111/j.1745-6584.2012.00964.x

    CAS  Google Scholar 

  • Findeling A, Ruy S, Scopel E (2003) Modeling the effects of a partial residue mulch on runoff using a physically based approach. J Hydrol 275:49–66. doi:10.1016/S0022-1694(03)00021-0

    Google Scholar 

  • Finizio A, Calliera M, Vighi M (2001) Rating systems for pesticide risk classification on different ecosystems. Ecotoxicol Environ Saf 49:262–274. doi:10.1006/eesa.2001.2063

    CAS  PubMed  Google Scholar 

  • Foltz RB (2012) A comparison of three erosion control mulches on decommissioned forest road corridors in the northern Rocky Mountains, United States. J Soil Water Conserv 67:536–544. doi:10.2489/jswc.67.6.536

    Google Scholar 

  • Fournier J (2006) Births of chemical crop protection. Actual Chim 298:43–53

    CAS  Google Scholar 

  • Galiulin RV, Bashkin VN, Galiulina RA (2002) Review: behavior of persistent organic pollutants in the air–plant–soil system. Water Air Soil Pollut 137:179–191. doi:10.1023/A:1015558526154

    CAS  Google Scholar 

  • Ganzelmeier H, Rautmann D, Spangenberg R, Streloke M, Herrmann M, Wenzelburger HJ, Walter HF (1995) Studies on the spray drift of plant protection products—results of a test program carried out throughout the Federal Republic of Germany. Blackwell Wissenschaftverlag, Berlin

    Google Scholar 

  • Gárfias J, Verrette J-L, Antigüedad I, André C (1996) Choix d’un modèle pluie-ruissellement pour des conditions hydrologiques complexes. J Hydrol 176:227–247. doi:10.1016/0022-1694(95)02772-6

    Google Scholar 

  • Gil Y, Sinfort C (2005) Emission of pesticides to the air during sprayer application: a bibliographic review. Atmos Environ 39:5183–5193. doi:10.1016/j.atmosenv.2005.05.019

    CAS  Google Scholar 

  • Gish TJ, Sadeghi A, Wienhold BJ (1995) Volatilization of alachlor and atrazine as influenced by surface litter. Chemosphere 31:2971–2982. doi:10.1016/0045-6535(95)00157-4

    CAS  Google Scholar 

  • Gumiere SJ, Raclot D, Cheviron B, Davy G, Louchart X, Fabre J-C, Moussa R, Bissonnais YL (2010) MHYDAS-Erosion: a distributed single-storm water erosion model for agricultural catchments. Hydrol Process 25:1717–1728. doi:10.1002/hyp.7931

    Google Scholar 

  • Hartwig NL, Ammon HU (2002) Cover crops and living mulches. Weed Sci 50:688–699. doi:10.1614/0043-1745(2002)050[0688:AIACCA]2.0.CO;2

    CAS  Google Scholar 

  • Hewitt AJ (2001) Drift filtration by natural and artificial collectors: a literature review. Spray Drift Task Force, Macon

    Google Scholar 

  • Hjorth K, Johansen K, Holen B, Andersson A, Christensen HB, Siivinen K, Toome M (2011) Pesticide residues in fruits and vegetables from South America: a Nordic project. Food Control 22:1701–1706. doi:10.1016/j.foodcont.2010.05.017

    CAS  Google Scholar 

  • Holvoet K, Seuntjens P, Vanrolleghem PA (2007) Monitoring and modeling pesticide fate in surface waters at the catchment scale. Ecol Model 209:53–64. doi:10.1016/j.ecolmodel.2007.07.030

    CAS  Google Scholar 

  • Holvoet K, van Griensven A, Gevaert V, Seuntjens P, Vanrolleghem PA (2008) Modifications to the SWAT code for modelling direct pesticide losses. Environ Model Softw 23:72–81. doi:10.1016/j.envsoft.2007.05.002

    Google Scholar 

  • Huang X, Pedersen T, Fischer M, White R, Young TM (2004) Herbicide runoff along highways. 1. Field observations. Environ Sci Technol 38:3263–3271. doi:10.1021/es034847h

    CAS  PubMed  Google Scholar 

  • Jarvis NJ, Hollis JM, Nicholls PH, Mayr T, Evans SP (1997) MACRO—DB: a decision-support tool for assessing pesticide fate and mobility in soils. Environ Model Softw 12:251–265. doi:10.1016/S1364-8152(97)00147-3

    Google Scholar 

  • Jones JA, Swanson FJ, Wemple BC, Snyder KU (2000) Effects of roads on hydrology, geomorphology, and disturbance patches in stream networks. Conserv Biol 14:76–85. doi:10.1046/j.1523-1739.2000.99083.x

    Google Scholar 

  • Julien PY, Saghafian B, Ogden FL (1995) Raster-based hydrologic modelling of spatially-varied surface runoff. J Am Water Resour Assoc 31:523–536. doi:10.1111/j.1752-1688.1995.tb04039.x

    Google Scholar 

  • Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev 32:501–529. doi:10.1007/s13593-011-0068-3

    CAS  Google Scholar 

  • Kauark Leite LA (1990) Réflexions sur l’utilité des modèles mathématiques dans la gestion de la pollution diffuse d’origine agricole. Ph.D. thesis, Ecole Nationale des Ponts et Chaussées

  • Knisel WG, Walter G (1980) CREAMS: a field scale model for chemicals, runoff and erosion from agricultural management systems. United States Department of Agriculture, Washington, DC

    Google Scholar 

  • Knisel WG, Walter G (1993) GLEAMS: Groundwater Loading Effects of Agricultural Management Systems. University of Georgia, Biological and Agricultural Engineering Department, Athens

    Google Scholar 

  • Knisel WG, Leonard RA, Davis FM (1989) Agricultural management alternatives: GLEAMS model simulations. In: Proceedings of the 1989 Summer Computer Simulation Conference. The Society, San Diego, pp 701–706

  • Knisel WG, Leonard RA, Davis FM (1995) Representing management practices in GLEAMS. Eur J Agron 4:499–505

    Google Scholar 

  • Kogan M (1998) Integrated pest management: historical perspectives and contemporary developments. Annu Rev Entomol 43:243–270. doi:10.1146/annurev.ento.43.1.243

    CAS  PubMed  Google Scholar 

  • Köhne JM, Köhne S, Šimůnek J (2009a) A review of model applications for structured soils: a) water flow and tracer transport. J Contam Hydrol 104:4–35. doi:10.1016/j.jconhyd.2008.10.002

    PubMed  Google Scholar 

  • Köhne JM, Köhne S, Šimůnek J (2009b) A review of model applications for structured soils: b) pesticide transport. J Contam Hydrol 104:36–60. doi:10.1016/j.jconhyd.2008.10.003

    PubMed  Google Scholar 

  • Kreuger J (1998) Pesticides in stream water within an agricultural catchment in southern Sweden, 1990–1996. Sci Total Environ 216:227–251. doi:10.1016/S0048-9697(98)00155-7

    CAS  PubMed  Google Scholar 

  • Kruhm-Pimpl M (1993) Pesticides in surface-water—analytical results for drinking-water reservoirs and bank filtrate waters. Acta Hydrochim Hydrobiol 21:145–152. doi:10.1002/aheh.19930210303

    CAS  Google Scholar 

  • Lacas JG, Voltz M, Gouy V, Carluer N, Gril JJ (2005) Using grassed strips to limit pesticide transfer to surface water: a review. Agron Sustain Dev 25:253–266. doi:10.1051/agro:2005001

    CAS  Google Scholar 

  • Lacas JG, Carluer N, Voltz M (2012) Efficiency of a grass buffer strip for limiting diuron losses from an uphill vineyard towards surface and subsurface waters. Pedosphere 22:580–592. doi:10.1016/S1002-0160(12)60043-5

    Google Scholar 

  • Lagacherie P, Rabotin M, Colin F, Moussa R, Voltz M (2010) Geo-MHYDAS: a landscape discretization tool for distributed hydrological modeling of cultivated areas. Comput Geosci 36:1021–1032. doi:10.1016/j.cageo.2009.12.005

    Google Scholar 

  • Larsbo M, Jarvis NJ (2003) MACRO 5.0. A model of water flow and solute transport in macroporous soil. Technical description. Swedish University of Agricultural Sciences, Sweden

    Google Scholar 

  • Larson SJ, Capel PD, Goolsby DA, Zaugg SD, Sandstrom MW (1995) Relations between pesticide use and riverine flux in the Mississippi River basin. Chemosphere 31:3305–3321. doi:10.1016/0045-6535(95)00176-9

    CAS  Google Scholar 

  • Leistra M, van der Linden AMA, Boesten JJTI, Tiktak A, van den Berg F (2001) PEARL model for pesticide behaviour and emissions in soil-plant systems—descriptions of the processes in FOCUS PEARL v 1.1.1. Alterra, Green World Research, Wageningen

    Google Scholar 

  • Leonard RA (1990) Movement of pesticides into surface waters. In: Cheng HH (ed) Pesticides in the soil environment: processes, impacts, and modeling. Soil Science Society of America, Madison, pp 303–349

    Google Scholar 

  • Leonard RA, Knisel WG, Still DA (1987) GLEAMS: Groundwater Loading Effects of Agricultural Management Systems. Trans ASAE 30:1403–1418

    Google Scholar 

  • Levavasseur F, Bailly JS, Lagacherie P, Colin F, Rabotin M (2012) Simulating the effects of spatial configurations of agricultural ditch drainage networks on surface runoff from agricultural catchments. Hydrol Process 26:3393–3404. doi:10.1002/hyp.8422

    Google Scholar 

  • Levillain J, Cattan P, Colin F, Voltz M, Cabidoche Y-M (2012) Analysis of environmental and farming factors of soil contamination by a persistent organic pollutant, chlordecone, in a banana production area of French West Indies. Agric Ecosyst Environ 159:123–132. doi:10.1016/j.agee.2012.07.005

    Google Scholar 

  • LimnoTech (2010) Blanchard watershed annAGNPS modeling—final report. LimnoTech, Ann Arbor

    Google Scholar 

  • Lin CY, Chou WC, Lin WT (2002) Modeling the width and placement of riparian vegetated buffer strips: a case study on the Chi-Jia-Wang Stream, Taiwan. J Environ Manag 66:269–280. doi:10.1006/jema.2002.0589

    CAS  Google Scholar 

  • Luo Y, Zhang M (2009) Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT. Environ Pollut 157:3370–3378. doi:10.1016/j.envpol.2009.06.024

    CAS  PubMed  Google Scholar 

  • Ma L, Ahuja LR, Ascough JC II, Shaffer MJ, Rojas KW, Malone RW, Cameira MR (2001) Integrating system modeling with field research in agriculture: applications of the root zone water quality model (RZWQM). Adv Agron 71:233–292. doi:10.1016/S0065-2113(01)71016-4

    Google Scholar 

  • Mackay D (2001) Multimedia environmental models: the fugacity approach. Lewis–CRC, Boca Raton

    Google Scholar 

  • Madrigal I (2004) Rétention de pesticides dans les sols des dispositifs tampon, enherbés et boisés. Rôle des matières organiques. Ph.D. thesis, Institut National Agronomique de Paris-Grignon

  • Madrigal I, Benoit P, Barriuso E, Etiévant V, Souiller C, Real B, Dutertre A (2002) Capacité de stockage et d’épuration des sols de dispositifs enherbés vis-à-vis des produits phytosanitaires. Deuxième partie : Propriétés de rétention de deux herbicides, l’isoproturon et le diflufénicanil dans différents sols de bandes enherbées. Etude Gest Sol 6:287–302

    Google Scholar 

  • Magliola C, Knisel WG (1992) Impact of agriculture on water quality in Circeo National Park, Italy: a model study. I—Pesticides. In: Balducci S, Crema G, di Bartolomeo G, Formigoni G, Merlo C (eds) Aquater 1972–1992, Venti Anni per le Risorse Naurali. Aquater, San Lorenzo in Campo, pp 293–301

    Google Scholar 

  • Malézieux E (2012) Designing cropping systems from nature. Agron Sustain Dev 32:15–29. doi:10.1007/s13593-011-0027-z

    Google Scholar 

  • Malézieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valantin-Morison M (2009) Mixing plant species in cropping systems: concepts, tools and models. A review. Agron Sustain Dev 29:43–62. doi:10.1051/agro:2007057

    Google Scholar 

  • Malone RW, Ahuja LR, Ma L, Don Wauchope R, Ma Q, Rojas KW (2004) Application of the Root Zone Water Quality Model (RZWQM) to pesticide fate and transport: an overview. Pest Manag Sci 60:205–221. doi:10.1002/ps.789

    CAS  PubMed  Google Scholar 

  • Maraite H, Steurbaut W, Debongnie W (2004) Development of awareness tools for a sustainable use of pesticides. Belgian Science Policy, Brussels. http://www.belspo.be/belspo/organisation/Publ/pub_ostc/CPagr/rappCP33_en.pdf. Accessed 17 Jan 2013

  • Martin P, Joannon A, Mignolet C, Souchère V, Thenail C (2006) Systèmes de culture et territoires: Cas des questions environnementales. In: Doré T, Le Bail M, Martin P, Ney B, Roger-Estrade J (eds) L’agronomie aujourd’hui. Editions Quae, Versailles, pp 253–284

    Google Scholar 

  • Maybank J, Yoshida K, Grover R (1978) Spray drift from agricultural pesticide applications. J Air Pollut Control Assoc 28:1009–1014. doi:10.1080/00022470.1978.10470699

    CAS  Google Scholar 

  • Meynard J-M, Doré T, Habib R (2001) L’évaluation et la conception de systèmes de culture pour une agriculture durable. CR Acad Agric Fr 87:223–236

    Google Scholar 

  • Mohamoud YM, Parmar R, Wolfe K (2010) Modeling Best Management Practices (BMPs) with HSPF. Innovations in watershed management underland use and climate change. American Society of Civil Engineers, Madison, pp 892–898

    Google Scholar 

  • Moonen A, Marshall EJ (2001) The influence of sown margin strips, management and boundary structure on herbaceous field margin vegetation in two neighbouring farms in southern England. Agric Ecosyst Environ 86:187–202. doi:10.1016/S0167-8809(00)00283-8

    Google Scholar 

  • Moore MT, Bennett ER, Cooper CM, Smith S, Shields FD, Milam CD, Farris JL (2001) Transport and fate of atrazine and lambda-cyhalothrin in an agricultural drainage ditch in the Mississippi Delta, USA. Agric Ecosyst Environ 87:309–314. doi:10.1016/S0167-8809(01)00148-7

    CAS  Google Scholar 

  • Moore MT, Denton DL, Cooper CM, Wrysinski J, Miller JL, Werner I, Horner G, Crane D, Holcomb DB, Huddleston GM 3rd (2011) Use of vegetated agricultural drainage ditches to decrease pesticide transport from tomato and alfalfa fields in California, USA. Environ Toxicol Chem 30:1044–1049. doi:10.1002/etc.474

    CAS  PubMed  Google Scholar 

  • Morgan RPC, Quinton JN, Smith RE, Govers G, Poesen JWA, Auerswald K, Chisci G, Torri D, Styczen ME (1998) The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf Process Landforms 23:527–544. doi:10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5

    Google Scholar 

  • Moussa R, Voltz M, Andrieux P (2002) Effects of the spatial organization of agricultural management on the hydrological behaviour of a farmed catchment during flood events. Hydrol Process 16:393–412. doi:10.1002/hyp.333

    Google Scholar 

  • Moussa R, Voltz M, Andrieux P, Servat E, Najem W, Leduc C, Shakeel A (2003) Impacts of various scenarios of agricultural management on the hydrological behaviour of a farmed catchment during flood events. In: Servat E, Najem W, Leduc C, Shakeel A (eds) Hydrology in Mediterranean and semiarid regions. International Association of Hydrological Sciences, Montpellier, pp 417–421

    Google Scholar 

  • Moussa R, Colin F, Dagès C, Fabre J-C, Lagacherie P, Louchart X, Rabotin M, Raclot D, Voltz M (2010) Distributed hydrological modelling of farmed catchments (MHYDAS): assessing the impact of man-made structures on hydrological processes. LandMod 2010: International Conference on Integrative Landscape Modelling. Quæ, Montpellier, pp 1–14

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and Water Assessment Tool: theoretical documentation version 2009. Texas Water Resources Institute, College Station

    Google Scholar 

  • Norris LA (1974) Behavior of pesticides in plants. U.S. Department of Agriculture—Forest Service, Portland

    Google Scholar 

  • Passeport E, Tournebize J, Chaumont C, Guenne A, Coquet Y (2013) Pesticide contamination interception strategy and removal efficiency in forest buffer and artificial wetland in a tile-drained agricultural watershed. Chemosphere 91:1289–1296. doi:10.1016/j.chemosphere.2013.02.053

    CAS  PubMed  Google Scholar 

  • Payraudeau S, Gregoire C (2012) Modelling pesticides transfer to surface water at the catchment scale: a multi-criteria analysis. Agron Sustain Dev 32:479–500. doi:10.1007/s13593-011-0023-3

    CAS  Google Scholar 

  • Ponce VM, Hawkins RH (1996) Runoff curve number: has it reached maturity? J Hydrol Eng 1:11–19. doi:10.1061/(ASCE)1084-0699(1996)1:1(11)

    Google Scholar 

  • Quilbé R, Rousseau AN (2007) GIBSI: an integrated modelling system for watershed management—sample applications and current developments. Hydrol Earth Syst Sci 11:1785–1795. doi:10.5194/hess-11-1785-2007

    Google Scholar 

  • Quilbé R, Rousseau AN, Lafrance P, Leclerc J, Amrani M (2006) Selecting a pesticide fate model at the watershed scale using a multi-criteria analysis. Water Qual Res J Canada 41:283–295

    Google Scholar 

  • Raphael L, Sierra J, Recous S, Ozier-Lafontaine H, Desfontaines L (2012) Soil turnover of crop residues from the banana (Musa AAA cv. Petite-Naine) mother plant and simultaneous uptake by the daughter plant of released nitrogen. Eur J Agron 38:117–123. doi:10.1016/j.eja.2011.07.005

    Google Scholar 

  • Ravier I, Haouisee E, Clement M, Seux R, Briand O (2005) Field experiments for the evaluation of pesticide spray-drift on arable crops. Pest Manag Sci 61:728–736. doi:10.1002/ps.1049

    CAS  PubMed  Google Scholar 

  • Real B (2004) Démarche proposée par le CORPEN pour l’estimation des risques de contamination des eaux. In: Barriuso E (ed) Estimation des risques environnementaux des pesticides. INRA Editions, Paris, pp 87–103

    Google Scholar 

  • Refsgaard JC, Storm B (1995) MIKE SHE. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources, Littleton, pp 809–846

    Google Scholar 

  • Reichenberger S, Bach M, Skitschak A, Frede H-G (2007) Mitigation strategies to reduce pesticide inputs into ground and surface water and their effectiveness; a review. Sci Total Environ 384:1–35. doi:10.1016/j.scitotenv.2007.04.046

    CAS  PubMed  Google Scholar 

  • Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). US Government Printing Office, Washington, DC

    Google Scholar 

  • Rice PJ, McConnell LL, Heighton LP, Sadeghi AM, Isensee AR, Teasdale JR, Abdul-Baki AA, Harman-Fetcho JA, Hapeman CJ (2001) Runoff loss of pesticides and soil: a comparison between vegetative mulch and plastic mulch in vegetable production systems. J Environ Qual 30:1808–1821

    CAS  PubMed  Google Scholar 

  • Rice PJ, Rice PJ, Arthur EL, Barefoot AC (2007) Advances in pesticide environmental fate and exposure assessments. J Agric Food Chem 55:5367–5376. doi:10.1021/jf063764s

    CAS  PubMed  Google Scholar 

  • Ripoche A, Jacqua G, Bussière F, Guyader S, Sierra J (2008) Survival of Colletotrichum gloeosporioides (causal agent of yam anthracnose) on yam residues decomposing in soil. Appl Soil Ecol 38:270–278. doi:10.1016/j.apsoil.2007.10.015

    Google Scholar 

  • Roger-Estrade J, Richard G, Dexter AR, Boizard H, Tourdonnet S, Bertrand M, Caneill J (2009) Integration of soil structure variations with time and space into models for crop management. A review. Agron Sustain Dev 29:135–142. doi:10.1051/agro:2008052

    Google Scholar 

  • Rojas KW, Ahuja LR (2000) Chapter 8: Management Practices. In: Ahuja LR, Rojas KW, Hanson JD, Shaffer MJ, Ma L (eds) Root Zone Water Quality Model: modelling management effects on water quality and crop production. Water Resources, Littleton, pp 245–280

    Google Scholar 

  • Rosset PM, Altieri MA (1997) Agroecology versus input substitution: a fundamental contradiction of sustainable agriculture. Soc Nat Resour 10:283–295. doi:10.1080/08941929709381027

    Google Scholar 

  • Roussel O, Cavelier A, van der Werf HMG (2000) Adaptation and use of a fuzzy expert system to assess the environmental effect of pesticides applied to field crops. Agric Ecosyst Environ 80:143–158. doi:10.1016/S0167-8809(00)00142-0

    CAS  Google Scholar 

  • Schiavon M, Perrin-Ganier C, Portal J (1995) La pollution de l’eau par les produits phytosanitaires: Etat et origine. Agronomie 15:157–170. doi:10.1051/agro:19950301

    Google Scholar 

  • Schulz R (2001) Comparison of spray drift and runoff-related input of azinphos-methyl and endosulfan from fruit orchards into the Lourens River, South Africa. Chemosphere 45:543–551. doi:10.1016/S0045-6535(00)00601-9

    CAS  PubMed  Google Scholar 

  • Shaman J, Stieglitz M, Burns D (2004) Are big basins just the sum of small catchments? Hydrol Process 18:3195–3206. doi:10.1002/hyp.5739

    Google Scholar 

  • Sharpley AN, Williams JR (1990) Erosion productivity impact calculator: 1. Model documentation. U.S. Department of Agriculture, Agricultural Research Service, Temple

  • Shasha BS, Doane WM, Russell CR (1976) Starch-encapsulated pesticides for slow release. J Polym Sci Pol Lett 14:417–420. doi:10.1002/pol.1976.130140708

    CAS  Google Scholar 

  • Siimes K, Kämäri J (2003) A review of available pesticide leaching models: selection of models for simulation of herbicide fate in Finnish sugar beet cultivation. Boreal Environ Res 8:31–51

    CAS  Google Scholar 

  • Simunek J, Jarvis NJ, van Genuchten MT, Gärdenäs A (2003) Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J Hydrol 272:14–35. doi:10.1016/S0022-1694(02)00252-4

    Google Scholar 

  • Sinclair RG (1973) Slow-release pesticide system. Polymers of lactic and glycolic acids as ecologically beneficial, cost-effective encapsulating materials. Environ Sci Technol 7:955–956. doi:10.1021/es60082a011

    CAS  Google Scholar 

  • Sivapalan M (2006) Pattern, process and function: elements of a unified theory of hydrology at the catchment scale. In: Anderson MG, McDonnell JJ (eds) Encyclopedia of hydrological sciences. Wiley, USA, pp 193–219

    Google Scholar 

  • Srinivasan R, Ramanarayanan TS, Arnold JG, Bednarz ST (1998) Large area hydrologic modeling and assessment part II: model application. J Am Water Resour Assoc 34:91–101. doi:10.1111/j.1752-1688.1998.tb05962.x

    CAS  Google Scholar 

  • Stenemo F, Jarvis NJ (2010) Users guide to MACRO 5.2, a model of water flow and solute transport in macroporous soil. Swedish University of Agricultural Sciences, Stockholm

    Google Scholar 

  • Styczen M, Thorsen M, Refsgaard A, Christiansen JS, Soren H (1999) Non-point pollution modelling at different scales and resolution, based on MIKE SHE. 3rd DHI Software Conference. Helsingør, Denmark, pp 1–25

  • Styczen M, Petersen S, Olsen NK, Andersen MB (2004) Technical documentation of PestSurf, a model describing fate and transport of pesticides in surface water for Danish conditions. Ministry of Environment, Danish Environmental Protection Agency. http://www.dhigroup.com/upload/publications/mikeshe/Styczen_Technical_documentation.pdf. Accessed 16 Mar 2013

  • Suarez LA (2005) PRZM-3, a model for predicting pesticide and nitrogen fate in the crop root and unsaturated soil zones: user’s manual for release 3.12.2. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Takken I, Govers G, Jetten V, Nachtergaele J, Steegen A, Poesen J (2001) Effects of tillage on runoff and erosion patterns. Soil Tillage Res 61:55–60. doi:10.1016/S0167-1987(01)00178-7

    Google Scholar 

  • Tanji KK (1993) Ground water contamination concerns in horticultural production systems. Acta Horticult 355:37–44

    Google Scholar 

  • Thiollet-Scholtus M (2004) Construction d’un indicateur de qualité des eaux de surfaces vis à vis des produits phytosanitaires à l’échelle du bassin versant viticole. Ph.D. thesis, Institut National Polytechnique de Lorraine

  • Tiemeyer B, Moussa R, Lennartz B, Voltz M (2007) MHYDAS-DRAIN: a spatially distributed model for small, artificially drained lowland catchments. Ecol Model 209:2–20. doi:10.1016/j.ecolmodel.2007.07.003

    Google Scholar 

  • Tiktak A, van den Berg F, Boesten JJTI, van Kraalingen D, Leistra M, van der Linden AMA (2000) Manual of FOCUS PEARL version 1.1.1. National institute of public health and the environment, Bilthoven

    Google Scholar 

  • Tiktak A, Nie DD, Linden TVD, Kruijne R (2002) Modelling the leaching and drainage of pesticides in the Netherlands: the GeoPEARL model. Agronomie 22:373–387. doi:10.1051/agro:2002022

    Google Scholar 

  • Tiktak A, van der Linden AMA, Boesten JJTI (2003) The GeoPEARL model, model description, application and manual. National Institute of Public Health and the Environment, Bilthoven

    Google Scholar 

  • Tiktak A, van der Linden AMA, Boesten JJTI, Kruijne R, van Kraalingen D (2004) The GeoPEARL model. Part II. User guide and model description update. National Institute of Public Health and the Environment, Bilthoven

    Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677. doi:10.1038/nature01014

    CAS  PubMed  Google Scholar 

  • Tixier P (2004) Prototyping of banana-based cropping systems using models: an application to cropping systems of Guadeloupe F.W.I. Ph.D. thesis, Ecole Nationale Supérieure Agronomique de Montpellier

  • Tixier P, Malézieux E, Dorel M, Bockstaller C, Girardin P (2007) Rpest—an indicator linked to a crop model to assess the dynamics of the risk of pesticide water pollution: application to banana-based cropping systems. Eur J Agron 26:71–81. doi:10.1016/j.eja.2006.08.006

    CAS  Google Scholar 

  • Tixier P, Lavigne C, Alvarez S, Gauquier A, Blanchard M, Ripoche A, Achard R (2011) Model evaluation of cover crops, application to eleven species for banana cropping systems. Eur J Agron 34:53–61. doi:10.1016/j.eja.2010.10.004

    Google Scholar 

  • Tortrat F (2005) Modélisation orientée décision des processus de transfert par ruissellement et subsurface des herbicides dans les bassins versants agricoles. Ph.D. thesis, Ecole Nationale Supérieure Agronomique de Rennes—AgroCampus Rennes

  • Ucar T, Hall FR (2001) Windbreaks as a pesticide drift mitigation strategy: a review. Pest Manag Sci 57:663–675. doi:10.1002/ps.341

    CAS  PubMed  Google Scholar 

  • USDA (1986) Urban hydrology for small watersheds. USDA, Soil Conservation Service, Engineering Division, Washington, DC

    Google Scholar 

  • USDA (2012) NRCS National Engineering Handbook—Part 630/Hydrology. USDA, National Resources Conservation Service. http://directives.sc.egov.usda.gov/viewerFS.aspx?hid=21422. Accessed 06 Jul 2012

  • van der Keur P, Henriksen H, Sonnenborg T, van Roosmalen L, Rosenbom AE, Olesen JE, Kjaer J, Jørgensen LN, Christensen OB (2011) Catchment scale modelling of changes in pesticide leaching under present and future climate conditions. Demonstrated for two cases in Denmark. Abstract for 2011 Fall Meeting, American Geophysical Union (AGU)

  • van der Werf HMG (1996) Assessing the impact of pesticides on the environment. Agric Ecosyst Environ 60:81–96. doi:10.1016/S0167-8809(96)01096-1

    Google Scholar 

  • van der Werf HMG, Zimmer C (1998) An indicator of pesticide environmental impact based on a fuzzy expert system. Chemosphere 36:2225–2249. doi:10.1016/S0045-6535(97)10194-1

    PubMed  Google Scholar 

  • van Dijk HFG, Guicherit R (1999) Atmospheric dispersion of current-use pesticides: a review of the evidence from monitoring studies. Water Air Soil Pollut 115:21–70. doi:10.1023/A:1005293020536

    Google Scholar 

  • van Dijk PM, Kwaad FJPM, Klapwijk M (1996) Retention of water and sediment by grass strips. Hydrol Process 10:1069–1080. doi:10.1002/(SICI)1099-1085(199608)10:8<1069::AID-HYP412>3.0.CO;2-4

    Google Scholar 

  • Vennix S, Northcott W (2004) Prioritizing vegetative buffer strip placement in an agricultural watershed. J Spat Hydrol 4:1–19

    Google Scholar 

  • Walter MF, Steenhuis TS, Haith DA (1979) Nonpoint source pollution control by soil and water conservation practices. Trans ASAE 22:834–840

    Google Scholar 

  • Warren N, Allan IJ, Carter JE, House WA, Parker A (2003) Pesticides and other micro-organic contaminants in freshwater sedimentary environments—a review. Appl Geochem 18:159–194. doi:10.1016/S0883-2927(02)00159-2

    CAS  Google Scholar 

  • Wauchope RD, Rojas KW, Ahuja LR, Ma Q, Malone RW, Ma L (2004) Documenting the pesticide processes module of the ARS RZWQM agroecosystem model. Pest Manag Sci 60:222–239. doi:10.1002/ps.814

    CAS  PubMed  Google Scholar 

  • Williams JR, Jones CA, Dyke PT (1984) A modeling approach to determining the relationship between erosion and soil productivity. Trans ASAE 27:129–144

    Google Scholar 

  • Williams JR, Dyke PT, Fuchs WW, Benson VW, Rice OW, Taylor ED (1990) EPIC—Erosion/Productivity Impact Calculator: 2. user manual. U.S. Department of Agriculture, Agricultural Research Service, Temple

  • Winchell M, Estes T (2009) A review of simulation models for evaluating the effectiveness of buffers in reducing pesticide exposure. Stone Environmental, Inc. http://abe.ufl.edu/carpena/files/pdf/software/vfsmod/RunoffBufferPaper_Final.pdf. Accessed 25 Sep 2012

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning. U.S. Department of Agriculture, Washington, DC

    Google Scholar 

  • Wohlfahrt J (2008) Développement d’un indicateur d’exposition des eaux de surface aux pertes de pesticides à l’échelle du bassin versant. Ph.D. thesis, Institut National Polytechnique de Lorraine

  • Wohlfahrt J, Colin F, Assaghir Z, Bockstaller C (2010) Assessing the impact of the spatial arrangement of agricultural practices on pesticide runoff in small catchments: combining hydrological modeling and supervised learning. Ecol Indic 10:826–839. doi:10.1016/j.ecolind.2010.01.004

    CAS  Google Scholar 

  • Wu L, Swan JB, Paulson WH, Randall GW (1992) Tillage effects on measured soil hydraulic properties. Soil Tillage Res 25:17–33. doi:10.1016/0167-1987(92)90059-K

    Google Scholar 

  • Young RA, Onstad CA, Bosch DD, Anderson WP (1989) AGNPS: a nonpoint-source pollution model for evaluating agricultural watersheds. J Soil Water Conserv 44:168–173

    Google Scholar 

  • Young RA, Onstad CA, Bosch DD, Anderson WP (1994) Agricultural Non-Point Source pollution model, version 4.03, AGNPS user’s guide. North Central Soil Conservation Research Laboratory, Morris

    Google Scholar 

  • Yuan Y, Bingner RL, Williams R, Lowrance R, Bosch D, Sheridan J (2007) Integration of annAGNPS and REMM for watershed riparian buffer systems assessment. Int J Sediment Res 22:60–69

    Google Scholar 

  • Yuan Y, Locke MA, Bingner RL (2008) Annualized Agricultural Non-Point Source model application for Mississippi Delta Beasley lake watershed conservation practices assessment. J Soil Water Conserv 63:542–551. doi:10.2489/jswc.63.6.542

    Google Scholar 

  • Zhang X, Zhang M (2011) Modeling effectiveness of agricultural BMPs to reduce sediment load and organophosphate pesticides in surface runoff. Sci Total Environ 409:1949–1958. doi:10.1016/j.scitotenv.2011.02.012

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is part of a Ph.D. thesis funded by Cirad, the European Regional Development Fund of Martinique, the Martinique French Water Office (O.D.E.), and the French Ministry of Overseas (M.O.M.). We thank the anonymous reviewers who helped improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Mottes.

About this article

Cite this article

Mottes, C., Lesueur-Jannoyer, M., Le Bail, M. et al. Pesticide transfer models in crop and watershed systems: a review. Agron. Sustain. Dev. 34, 229–250 (2014). https://doi.org/10.1007/s13593-013-0176-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-013-0176-3

Keywords

Navigation