Skip to main content

Agricultural Soil Degradation in Australia

  • Chapter
  • First Online:
Impact of Agriculture on Soil Degradation I

Abstract

Australia is the fifth largest country by size, and one of the most arid in the world. Agriculture is one of the key sectors in terms of spatial extent and economic relevance. However, because of their ancient and weathered nature, Australian agricultural soils are particularly susceptible to degradation processes such as erosion, compaction, salinization, acidification, and contamination, which ultimately lead to fertility loss, desertification, and thus decline in agricultural production and food security. Agricultural systems are under further pressure due to the rapidly intensifying threat of climate change. Consequently, protecting, maintaining, and restoring healthy soils is a significant challenge and one of the key national priorities. In this chapter, we review the major climatic, anthropogenic, and biotic drivers of agricultural land degradation in Australia, illustrating the impacts of these processes on agricultural production, discussing implications for soils and land sustainability in a global change context and outlining potential mitigation strategies. We conclude by highlighting current policies in place to resolve the challenges of agricultural land degradation in the Australian continent, with emphasis on the importance of concerted and collaborative effort involving government, business, and civil society sectors to address them effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Metcalfe DJ, Bui EN (2017) Australia state of the environment 2016: land, independent report to the Australian Government Minister for the Environment and Energy, Australian Government Department of the Environment and Energy, Canberra. https://doi.org/10.4226/94/58b6585f94911

  2. Searle R (2021) Australian soil classification map. Version 1.0.0. Terrestrial Ecosystem Research Network (TERN). (Dataset). https://doi.org/10.25901/edyr-wg85

  3. Orians GH, Milewski AV (2007) Ecology of Australia: the effects of nutrient-poor soils and intense fires. Biol Rev 82:393–423. https://doi.org/10.1111/j.1469-185X.2007.00017.x

    Article  Google Scholar 

  4. Eldridge DJ, Maestre FT, Koen TB, Delgado-Baquerizo M (2018) Australian dryland soils are acidic and nutrient-depleted, and have unique microbial communities compared with other drylands. J Biogeogr 45:2803–2814. https://doi.org/10.1111/jbi.13456

    Article  Google Scholar 

  5. Bennett JM, McBratney A, Field D, Kidd D, Stockmann U, Liddicoat C, Grover S (2019) Soil security for Australia. Sustainability 11:3416. https://doi.org/10.3390/su11123416

    Article  Google Scholar 

  6. Jackson T, Zammit K, Hatfield-Dodds S (2018) Snapshot of Australian agriculture. Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra

    Google Scholar 

  7. McGinn S, Flesch T, Chen D, Crenna B, Denmead O, Naylor T, Rowell D (2010) Coarse particulate matter emissions from cattle feedlots in Australia. J Environ Qual 39:791–798. https://doi.org/10.2134/jeq2009.0240

    Article  CAS  Google Scholar 

  8. Holt J (1997) Grazing pressure and soil carbon, microbial biomass and enzyme activities in semi-arid northeastern Australia. Appl Soil Ecol 5:143–149. https://doi.org/10.1016/S0929-1393(96)00145-X

    Article  Google Scholar 

  9. NFF (2017) Food, fibre and forestry facts: a summary of Australia’s agricultural sector. National Farmers Federation, Kingston, ACT. https://nff.org.au/media-centre/farm-facts/

    Google Scholar 

  10. ABS (2018) Agricultural commodities, Australia. Australian Bureau of Statistics 71210 https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/7121.02017-18?OpenDocument

  11. DAWE (2021) National Soil Strategy. Department of Agriculture, Water and the Environment, Canberra, Australia. https://www.agriculture.gov.au/sites/default/files/documents/awe.gov.au/publications. Last access 11 Apr 2022

  12. Gretton P, Salma U (1996) Land degradation in the Australian Agricultural Industry. Industry Commission, Canberra

    Google Scholar 

  13. Bellotti B, Rochecouste JF (2014) The development of conservation agriculture in Australia-farmers as innovators. Int Soil Water Conserv Res 2:21–34. https://doi.org/10.1016/S2095-6339(15)30011-3

    Article  Google Scholar 

  14. Lunt ID, Eldridge DJ, Morgan JW, Witt GB (2007) A framework to predict the effects of livestock grazing and grazing exclusion on conservation values in natural ecosystems in Australia. Aust J Bot 55:401–415. https://doi.org/10.1071/BT06178

    Article  Google Scholar 

  15. Eldridge DJ, Greene RSB, Dean C (2011) Climate change in the rangelands: implications for soil health and management. In: Singh B, Cowie AL, Yin Chan K (eds) Chapter 13. Soil health and climate change. Soil biology series. Springer, London, pp 237–255

    Chapter  Google Scholar 

  16. Wasson RJ, Mazari RK, Starr B, Clifton G (1998) The recent history of erosion and sedimentation on the Southern Tablelands of southeastern Australia: sediment flux dominated by channel incision. Geomorphology 24:291–308. https://doi.org/10.1016/S0169-555X(98)00019-1

    Article  Google Scholar 

  17. Eldridge DJ, Poore AG, Ruiz-Colmenero M, Letnic M, Soliveres S (2016) Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecol Appl 26:1273–1283. https://doi.org/10.1890/15-1234

    Article  Google Scholar 

  18. Eldridge DJ, Reed S, Travers SK, Bowker MA, Maestre FT, Ding J, Havrilla C, Rodriguez-Caballero E, Barger N, Weber B, Antoninka A, Belnap J, Chaudhary B, Faist A, Ferrenberg S, Huber-Sannwald E, Malam Issa O, Zhao Y (2020) The pervasive and multifaceted influence of biocrusts on water in the world’s drylands. Glob Chang Biol 26:6003–6014. https://doi.org/10.1111/gcb.15232

    Article  Google Scholar 

  19. Bullard JE, Ockelford A, Strong C, Aubault H (2018) Effects of cyanobacterial soil crusts on surface roughness and splash erosion. Eur J Vasc Endovasc Surg 123:3697–3712. https://doi.org/10.1029/2018JG004726

    Article  Google Scholar 

  20. Williams W, Büdel B, Williams S (2018) Wet season cyanobacterial N enrichment highly correlated with species richness and Nostoc in the northern Australian savannah. Biogeosciences 15:2149–2159. https://doi.org/10.5194/bg-15-2149-2018

    Article  CAS  Google Scholar 

  21. Eldridge DJ, Koen TB (2008) Formation of nutrient-poor soil patches in a semi-arid woodland by the European rabbit (Oryctolagus cuniculus L.). Austral Ecol 33:88–98. https://doi.org/10.1111/j.1442-9993.2007.01793.x

    Article  Google Scholar 

  22. Hacker RB, Jessop PJ, Smith WJ, Melville GJ (2010) A ground cover-based incentive approach to enhancing resilience in rangelands viewed as complex adaptive systems. Rangel J 32:283–291. https://doi.org/10.1071/RJ10011

    Article  Google Scholar 

  23. Braden J, Mills CH, Cornwell WK, Waudby HP, Letnic M (2021) Impacts of grazing by kangaroos and rabbits on vegetation and soils in a semi-arid conservation reserve. J Arid Environ 190:104526. https://doi.org/10.1016/j.jaridenv.2021.104526

    Article  Google Scholar 

  24. Eldridge DJ, Ding J, Travers SK (2021) Low-intensity kangaroo grazing has largely benign effects on soil health. Ecol Manage Restor 22. https://doi.org/10.1111/emr.12439

  25. Robertson G, Wright J, Brown D, Yuen K, Tongway D (2019) An assessment of feral horse impacts on treeless drainage lines in the Australian Alps. Ecol Manage Restor 20:21–30. https://doi.org/10.1111/emr.12359

    Article  Google Scholar 

  26. Chappell A, Sanderman J, Thomas M, Read A, Leslie C (2012) The dynamics of soil redistribution and the implications for soil organic carbon accounting in agricultural south-eastern Australia. Glob Chang Biol 18:2081–2088. https://doi.org/10.1111/j.1365-2486.2012.02682.x

    Article  Google Scholar 

  27. Orgill SE, Condon JR, Conyers MK, Morris SG, Alcock DJ, Murphy BW, Greene RSB (2018) Removing grazing pressure from a native pasture decreases soil organic carbon in southern New South Wales, Australia. Land Degrad Dev 29:274–283. https://doi.org/10.1002/ldr.2560

    Article  Google Scholar 

  28. McDonald SE, Reid N, Smith R, Waters CM, Hunter J, Rader R (2019) Rotational grazing management achieves similar plant diversity outcomes to areas managed for conservation in a semi-arid rangeland. Rangel J 41:135–145. https://doi.org/10.1071/RJ18090

    Article  Google Scholar 

  29. Byrnes RC, Eastburn DJ, Tate KW, Roche LM (2018) A global meta-analysis of grazing impacts on soil health indicators. J Environ Qual 47:758–765. https://doi.org/10.2134/jeq2017.08.0313

    Article  CAS  Google Scholar 

  30. Hacker RB, Sinclair K, Pahl L (2020) Prospects for ecologically and socially sustainable management of total grazing pressure in the southern rangelands of Australia. Rangel J 41:581–586. https://doi.org/10.1071/RJ20006

    Article  Google Scholar 

  31. Fleming PA, Anderson H, Prendergast AS, Bretz MR, Valentine LE, Hardy GES (2014) Is the loss of Australian digging mammals contributing to a deterioration in ecosystem function? Mamm Rev 44:94–108. https://doi.org/10.1111/mam.12014

    Article  Google Scholar 

  32. Hamza M, Anderson W (2005) Soil compaction in cropping systems: a review of the nature, causes and possible solutions. Soil Tillage Res 82:121–145. https://doi.org/10.1016/j.still.2004.08.009

    Article  Google Scholar 

  33. Walsh P (2002) New method yields a worm’s eye view. Farming Ahead 132:16–18

    Google Scholar 

  34. Roberton S, Lobsey C, Bennett JM (2021) A Bayesian approach toward the use of qualitative information to inform on-farm decision making: the example of soil compaction. Geoderma 382:114705. https://doi.org/10.1016/j.geoderma.2020.114705

    Article  Google Scholar 

  35. Bluett C, Tullberg JN, McPhee JE, Antille DL (2019) Soil and tillage research: why still focus on soil compaction? Soil Tillage Res:1042382. https://doi.org/10.1016/j.still.2019.05.028

  36. Zhang GS, Chan KY, Oates A, Heenan DP, Huang GB (2007) Relationship between soil structure and runoff/soil loss after 24 years of conservation tillage. Soil Tillage Res 92:122–128. https://doi.org/10.1016/j.still.2006.01.006

    Article  Google Scholar 

  37. Liu Q, Liu B, Zhang Y, Lin Z, Zhu T, Sun R, Wang X, Ma J, Bei Q, Liu G, Lin X, Xie Z (2017) Can biochar alleviate soil compaction stress on wheat growth and mitigate soil N2O emissions? Soil Biol Biochem 104:8–17. https://doi.org/10.1016/j.soilbio.2016.10.006

    Article  CAS  Google Scholar 

  38. Phogat V, Cox JW, Šimůnek J (2018) Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia. Agric Water Manag 201:107–117. https://doi.org/10.1016/j.agwat.2018.01.025

    Article  Google Scholar 

  39. Muyen Z, Moore GA, Wrigley RJ (2011) Soil salinity and sodicity effects of wastewater irrigation in south-east Australia. Agric Water Manag 99:33–41. https://doi.org/10.1016/j.agwat.2011.07.021

    Article  Google Scholar 

  40. Hajkowicz S, Young M (2005) Costing yield loss from acidity, sodicity and dryland salinity to Australian agriculture. Land Degrad Devel 16:417–433. https://doi.org/10.1002/ldr.670

    Article  Google Scholar 

  41. Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023. https://doi.org/10.1093/jxb/erj108

    Article  CAS  Google Scholar 

  42. ABS (2002) Salinity on Australian Farms, ABS Catalogue No. 4615.0 ISBN 0 642 47890 2. Australian Bureau of Statistics, Canberra

    Google Scholar 

  43. Wong VNL, Dalal RC, Greene RSB (2008) Salinity and sodicity effects on respiration and microbial biomass of soil. Biol Fertil Soils 44:943–953. https://doi.org/10.1007/s00374-008-0279-1

    Article  Google Scholar 

  44. Bañón S, Ochoa J, Bañón D, Ortuño MF, Sánchez-Blanco MJ (2019) Controlling salt flushing using a salinity index obtained by soil dielectric sensors improves the physiological status and quality of potted hydrangea plant. Sci Hortic 247:335–343. https://doi.org/10.1016/j.scienta.2018.12.026

    Article  CAS  Google Scholar 

  45. Boland A-M, Bewsell D, Kaine G (2006) Adoption of sustainable irrigation management practices by stone and pome fruit growers in the Goulburn/Murray Valleys, Australia. Irrig Sci 24:137–145. https://doi.org/10.1007/s00271-005-0017-5

    Article  Google Scholar 

  46. Dang YP, Dalal RC, Buck SR, Harms B, Kelly R, Hochman Z, Schwenke GD, Biggs AJW, Ferguson NJ, Norrish S, Routley R, McDonald M, Hall C, Singh DK, Daniells IG, Farquharson R, Manning W, Speirs S, Grewal HS, Cornish P, Bodapati N, Orange D (2010) Diagnosis, extent, impacts, and management of subsoil constraints in the northern grains cropping region of Australia. Aust J Soil Res 48:105–119. https://doi.org/10.1071/SR09074

    Article  Google Scholar 

  47. Page KL et al (2018) Management of the major chemical soil constraints affecting yields in the grain growing region of Queensland and New South Wales, Australia – a review. Soil Res 56:765–779. https://doi.org/10.1071/SR18233

    Article  CAS  Google Scholar 

  48. Rocha F, Esteban Lucas-Borja M, Pereira P, Muñoz-Rojas M (2020) Cyanobacteria as a nature-based biotechnological tool for restoring salt-affected soils. Agron 10:1321. https://doi.org/10.3390/agronomy10091321

    Article  CAS  Google Scholar 

  49. Feikema P, Baker T (2011) Effect of soil salinity on growth of irrigated plantation Eucalyptus in south-eastern Australia. Agric Water Manag 98:1180–1188. https://doi.org/10.1016/j.agwat.2011.03.005

    Article  Google Scholar 

  50. Tian D, Niu S (2015) A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett 10:024019. https://doi.org/10.1088/1748-9326/10/2/024019

    Article  CAS  Google Scholar 

  51. Hackney BF, Jenkins J, Powells J, Edwards CE, De Meyer S, Howieson JG, Yates RJ, Orgill SE (2019) Soil acidity and nutrient deficiency cause poor legume nodulation in the permanent pasture and mixed farming zones of south-eastern Australia. Crop Pasture Sci 70:1128–1140. https://doi.org/10.1071/CP19039

    Article  CAS  Google Scholar 

  52. Li GD, Conyers MK, Helyar KR, Lisle CJ, Poile GJ, Cullis BR (2019) Long-term surface application of lime ameliorates subsurface soil acidity in the mixed farming zone of south-eastern Australia. Geoderma 338:236–246. https://doi.org/10.1016/j.geoderma.2018.12.003

    Article  CAS  Google Scholar 

  53. Condon J, Burns H, Li G (2021) The extent, significance and amelioration of subsurface acidity in southern New South Wales, Australia. Soil Res 59:1–11. https://doi.org/10.1071/SR20079

    Article  CAS  Google Scholar 

  54. Joffre R, Rambal S (1993) How tree cover influences the water balance of Mediterranean rangelands. Ecology 74:570–582. https://doi.org/10.2307/1939317

    Article  Google Scholar 

  55. Caradus JR, Crush JR, Ouyang L, Fraser W (2001) Evaluation of aluminium-tolerant white clover (Trifolium repens) selections on East Otago upland soils. NZ J Agric Res 44:141–150. https://doi.org/10.1080/00288233.2001.9513470

    Article  Google Scholar 

  56. Thai PK, Heffernan AL, Toms LL, Li Z, Calafat AM, Hobson P, Broomhall S, Mueller JF (2016) Monitoring exposure to polycyclic aromatic hydrocarbons in an Australian population using pooled urine samples. Environ Int 88:30–35. https://doi.org/10.1016/j.envint.2015.11.019

    Article  CAS  Google Scholar 

  57. McLaughlin MJ, Tiller K, Naidu R, Stevens D (1996) The behaviour and environmental impact of contaminants in fertilizers. Soil Res 34:1–54. https://doi.org/10.1071/SR9960001

    Article  CAS  Google Scholar 

  58. Loganathan P, Hedley M, Grace N, Lee J, Cronin S, Bolan N, Zanders J (2003) Fertiliser contaminants in New Zealand grazed pasture with special reference to cadmium and fluorine – a review. Soil Res 41:501–532. https://doi.org/10.1071/SR02126

    Article  CAS  Google Scholar 

  59. Schöpfer L, Menzel R, Schnepf U, Ruess L, Marhan S, Brümmer F, Pagel H, Kandeler E (2020) Microplastics effects on reproduction and body length of the soil-dwelling nematode Caenorhabditis elegans. Front Environ Sci 8:41 10.18452/22474

    Article  Google Scholar 

  60. Fergusson L (2017) Anthrosols and Technosols: the anthropogenic signature of contaminated soils and sediments in Australia. Water Air Soil Pollut 228:269. https://doi.org/10.1007/s11270-017-3460-z

    Article  CAS  Google Scholar 

  61. Bradney L, Wijesekara H, Palansooriya KN, Obadamudalige N, Bolan NS, Ok YS, Rinklebe J, Kim KH, Kirkham MB (2019) Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environ Int 131:104937. https://doi.org/10.1016/j.envint.2019.104937

    Article  CAS  Google Scholar 

  62. Mohajerani A, Karabatak B (2020) Microplastics and pollutants in biosolids have contaminated agricultural soils: An analytical study and a proposal to cease the use of biosolids in farmlands and utilise them in sustainable bricks. Waste Manag 107:252–265. https://doi.org/10.1016/j.wasman.2020.04.021

    Article  CAS  Google Scholar 

  63. AWA (2019) Australian biosolids statistics, Australian Water Association, Australia. https://www.biosolids.com.au/guidelines/australian-biosolids-statistics

  64. Ng E-L, Lwanga EH, Eldridge SM, Johnston P, Hu H-W, Geissen V, Chen D (2018) An overview of microplastic and nanoplastic pollution in agroecosystems. Sci Total Environ 627:1377–1388. https://doi.org/10.1016/j.scitotenv.2018.01.341

    Article  CAS  Google Scholar 

  65. da Costa JP, Santos PS, Duarte AC, Rocha-Santos T (2016) (Nano)plastics in the environment-sources, fates and effects. Sci Total Environ 566:15–26. https://doi.org/10.1016/j.scitotenv.2016.05.041

    Article  CAS  Google Scholar 

  66. de Souza Machado AA, Lau CW, Kloas W, Bergmann J, Bachelier JB, Faltin E, Becker R, Görlich AS, Rillig MC (2019) Microplastics can change soil properties and affect plant performance. Environ Sci Technol 53:6044–6052. https://doi.org/10.1021/acs.est.9b01339

    Article  CAS  Google Scholar 

  67. Qi Y et al (2018) Macro-and micro-plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci Total Environ 645:1048–1056. https://doi.org/10.1016/j.scitotenv.2018.07.229

    Article  CAS  Google Scholar 

  68. Ren Z, Gui X, Xu X, Zhao L, Qiu H, Cao X (2021) Microplastics in the soil-groundwater environment: aging, migration, and co-transport of contaminants – a critical review. J Hazard Mater 419:126455. https://doi.org/10.1016/j.jhazmat.2021.126455

    Article  CAS  Google Scholar 

  69. Sobhani Z, Fang C, Naidu R, Megharaj M (2021) Microplastics as a vector of toxic chemicals in soil: Enhanced uptake of perfluorooctane sulfonate and perfluorooctanoic acid by earthworms through sorption and reproductive toxicity. Environ Technol Innov 22:101476. https://doi.org/10.1016/j.eti.2021.101476

    Article  CAS  Google Scholar 

  70. Hughes L (2011) Climate change and Australia: key vulnerable regions. Reg Environ Change 11:189–195. https://doi.org/10.1007/s10113-010-0158-9

    Article  Google Scholar 

  71. Arneth A et al (2019) IPCC special report on climate change and land. Summary for policy makers. International Panel on Climate Change, Geneva, Switzerland

    Google Scholar 

  72. Linehan V, Thorpe S, Andrews N, Kim Y, Beaini F (2012) Food demand to 2050: opportunities for Australian agriculture. ABARES conference, Canberra

    Google Scholar 

  73. Hughes L, Steffen W, Rice M, Pearce A (2015) Feeding a hungry nation: climate change, food and farming in Australia. Climate Council of Australia

    Google Scholar 

  74. Hughes N, Galeano D, Hattfield-Dodds S (2019) The effects of drought and climate variability on Australian farms, Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra. CC BY 4.0. https://doi.org/10.25814/5de84714f6e08

  75. Eldridge DJ, Beecham G (2018) The impact of climate variability on land use and livelihoods in Australia’s rangelands. In: Squires VR (ed) Climate variability, land-use and impact on livelihoods in the arid lands. Springer, New York

    Google Scholar 

  76. Rosenzweig C, Yang XB, Anderson P, Epstein P, Vicarelli M (2005) Agriculture: climate change, crop pests and diseases. In: Epstein P, Mills E (eds) Climate change futures: health, ecological and economic dimensions. The Center for Health and the Global Environment at Harvard Medical School, pp 70–77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Muñoz-Rojas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dadzie, F.A. et al. (2023). Agricultural Soil Degradation in Australia. In: Pereira, P., Muñoz-Rojas, M., Bogunovic, I., Zhao, W. (eds) Impact of Agriculture on Soil Degradation I. The Handbook of Environmental Chemistry, vol 120. Springer, Cham. https://doi.org/10.1007/698_2023_966

Download citation

Publish with us

Policies and ethics