Skip to main content
Log in

Numerical analysis of thermal effects during carbon dioxide injection with enhanced gas recovery: a theoretical case study for the Altmark gas field

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Prediction about reservoir temperature change during carbon dioxide injection requires consideration of all, often subtle, thermal effects. In particular, Joule–Thomson cooling (JTC) and the viscous heat dissipation (VHD) effect are factors that cause flowing fluid temperature to differ from the static formation temperature. In this work, warm-back behavior (thermal recovery after injection completed), as well as JTC and VHD effects, at a multi-layered depleted gas reservoir are demonstrated numerically. OpenGeoSys (OGS) is able to solve coupled partial differential equations for pressure, temperature and mole-fraction of each component of the mixture with a combination of monolithic and staggered approaches. The Galerkin finite element approach is adapted for space discretization of governing equations, whereas for temporal discretization, a generalized implicit single-step scheme is used. For numerical modeling of warm-back behavior, we chose a simplified test case of carbon dioxide injection. This test case is numerically solved by using OGS and FeFlow simulators independently. OGS differs from FeFlow in the capability of representing multi-componential effects on warm-back behavior. We verify both code results by showing the close comparison of shut-in temperature profiles along the injection well. As the JTC cooling rate is inversely proportional to the volumetric heat capacity of the solid matrix, the injection layers are cooled faster as compared to the non-injection layers. The shut-in temperature profiles are showing a significant change in reservoir temperature; hence it is important to account for thermal effects in injection monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ahmed A, Lee WJ (1995) Development of a new theoretical model for three-layered reservoirs with unequal initial pressures. SPE 29463-MS

  • Andre L, Azaroual M, Menjoz M (2010) Numerical simulations of the thermal impact of supercritical CO2 injection on chemical reactivity in a carbonate saline reservoir. Transp Porous Media 82:247–274

    Article  Google Scholar 

  • Baumann G, Henninges J (2012) Sensitivity study of pulsed neutron-gamma saturation monitoring at the Altmark site in the context of CO2 storage. Environ Earth Sci. doi:10.1007/s12665-012-1708-x

  • Böttcher N, Singh AK, Kolditz O, Liedl R (2011) Non-isothermal, compressible gas flow for the simulation of an enhanced gas recovery application. J Comput Appl Math. doi:10.1016/j.cam.2011.11.013

  • Cui C, Zhao X (2010) Method for calculating production indices of multilayer water drives reservoirs. J Pet Sci Eng 75:66–70

    Article  Google Scholar 

  • Curtis MR, Witterholt EJ (1973) Use of the temperature log for determining flow rates in production wells. SPE 4637-MS

  • Ehlig-Economides CA, Joseph JA (1987) A new test for determination of individual layer properties in a multi-layered reservoir. SPE Form Eval 2:261–283

    Google Scholar 

  • Esposito RA, Pashin JC, Hills DJ, Walsh PM (2010) Geologic assessment and injection design for a pilot CO2-enhanced oil recovery and sequestration demonstration in a heterogeneous oil reservoir: Citronelle Field, Alabama, USA. Environ Earth Sci 60:431–444

    Article  Google Scholar 

  • Garg SK, Pritchett JW (1977) On pressure-work, viscous dissipation and the energy balance relation for geothermal reservoirs. Adv Water Res 1:41–47

    Article  Google Scholar 

  • Gray WG, Miller CT (2004) Examination of Darcy’s law for flow in porous media with variable porosity. Environ Sci Technol 38:5895–5901

    Article  Google Scholar 

  • GDF SUEZ (2009) CLEAN DMS data mangement system. GFZ German Research Center for Geosciences

  • Görke U-J, Park C-H, Wang W, Singh AK, Kolditz O (2011) Numerical simulation of multi-phase hydro-mechanical processes induced by CO2 injection into deep saline aquifers. Oil Gas Sci Technol 66:105–118

    Article  Google Scholar 

  • Helmig R (1997) Multi-phase flow and transport processes in the subsurface: a contribution to the modeling of hydro-systems. Springer, Berlin

    Google Scholar 

  • Henninges J, Baumann G, Brandt W, Cunow C, Poser M, Schrötter J, Huenges E, (2011) A novel hybrid wireline logging system for downhole monitoring of fluid injection and production in deep reservoirs. In: Proceeding of 73rd EAGE conference and exhibition

  • Hurter S, Garnett A, Bielinski A, Kopp A (2007) Thermal signature of free-phase carbon dioxide in porous rocks: detectability of carbon dioxide by temperature logging. SPE 109007-MS

  • Kolditz O, Diersch HJ (1993) Quasi steady-state strategy for numerical simulation of geothermal circulation processes in hot dry rock fracture. Int J Non Linear Mech 28:467–481

    Article  Google Scholar 

  • Kolditz O, Bauer S, Beyer C, Böttcher N, Görke U-J, Kalbacher T, Park CH, Singh AK, Taron J, Wang W, Watanabe N (2012) A systematic benchmarking method for geologic CO2 injection and storage. Environ Earth Sci. doi:10.1007/s12665-012-1656-5

  • Köckritz V. (1979) Wärmeübertragungs- und Strömungsvorgänge bei der Förderung und Speicherung von Gasförmigen Medien - ein Beitrag zur Mathematischen Modellierung des Druck- und Temperaturverhaltens in Fördersonden und Speicherkavernen. Dissertation, Freiberg

  • Kuchuk FJ, Goode PA, Wilkinson DJ, Thambynayagam RKM (1991) Pressure-transient behavior of horizontal wells with and without gas cap or aquifer. SPE Form Eval 6:86–94

    Google Scholar 

  • Kühn M, Förster A, Grossmann J, Meyer R, Reinicke K, Schäfer D, Wendel H (2011) CLEAN: Preparing for a CO2 based enhanced gas recovery in a depleted gas field in Germany. Energy Procedia 4:5520–5526

    Article  Google Scholar 

  • Kühn M, Tesmer M, Pilz P, Meyer R, Reinicke K, Förster A, Kolditz O, Schäfer D (2012) Overview of the joint research project CLEAN: CO2 large-scale enhanced gas recovery in the Altmark natural gas field (Germany). Environ Earth Sci (submitted)

  • Lefkovits HC, Hazebroek P, Allen EE, Matthews CS (1961) A study of the behavior of bounded reservoirs composed of stratified layers. SPE J 1:43–58

    Google Scholar 

  • Mathias SA, Gluyas JG, Oldenburg CM, Tsang C (2010) Analytical solution for Joule–Thomson cooling during carbon dioxide geo-sequestration in depleted oil and gas reservoirs. Int J Greenhouse Gas Control 4:806–810

    Article  Google Scholar 

  • Millington RJ, Quirk JP (1961) Permeability of porous solids. Trans Faraday Soc 57:1200–1207

    Article  Google Scholar 

  • Oldenburg CM (2007) Joule–Thomson cooling due to CO2 injection into natural gas reservoirs. Energy Convers Manag 48:1808–1815

    Article  Google Scholar 

  • Oldenburg CM, SH Stevens SH, S.M Benson SM (2004) Economic feasibility of carbon sequestration with enhanced gas recovery (CSEGR). Energy 29:1413-1422

  • Ouyang LB, Belanger DL (2006) Flow profiling by distributed temperature sensor (DTS) system-expectation and reality. SPE Prod Oper 21:269–281

    Google Scholar 

  • Park C-H, Böttcher N, Wang W, Kolditz O (2011) Are upwind techniques in multi-phase flow models necessary?. J Comput Phys 30:8304–8312

    Article  Google Scholar 

  • Pruess K (2008) On carbon dioxide fluid flow and heat transfer behavior in the subsurface, following leakage from a geologic storage reservoir. Environ Geol 54:1677–1686

    Google Scholar 

  • Ramazanov ASh, Nagimov VM (2007) Analytical model for the calculation of temperature distribution in the oil reservoir during unsteady fluid inflow. Oil Gas Bus J

  • Ramey H Jr. (1962) Wellbore heat transmission. J Pet Technol 96:427–35

    Google Scholar 

  • Söderlind G (2002) Automatic control and adaptive time-stepping. Numer Algorithms 31:281–310

    Article  Google Scholar 

  • Rink K, Kalbacher T, Kolditz O (2011) Visual data exploration for hydrological analysis. Environ Earth Sci 65:1395–1403

    Article  Google Scholar 

  • Singh AK, Görke U-J, Kolditz O (2011) Numerical simulation of non-isothermal compositional gas flow: application to CO2 injection into gas reservoirs. Energy 36:3446–3458

    Article  Google Scholar 

  • Singh AK, Pilz P, Zimmer M, T. Kalbacher Görke U-J, Kolditz O (2012) Numerical simulation of tracer transport in the Altmark gas field. Environ Earth Sci. doi:10.1007/s12665-012-1688-x

  • Sui W, Zhu D, Hill AD, Ehlig-Economides CA (2008) Determining multilayer formation properties from transient temperature and pressure measurements. In: Proceeding of SPE annual technical conference and exhibition, 21–24 September 2008, Denver

  • Tenzer H, Park C-H, Kolditz O, McDermott CI (2010) Comparison of the exploration and evaluation of enhanced HDR geothermal sites at Soultz-sous-Forts and Urach Spa. Environ Earth Sci 61:853–880

    Article  Google Scholar 

  • Vargaftik, NB (1975) Tables on the thermo physical properties of liquids and gases, 2nd edn. Hemisphere Publication Corporation, New York

  • Wang W, Rutqvist J, Görke U-J, Birkholzer JT, Kolditz O (2011) Non-isothermal flow in low permeable porous media: a comparison of Richards’ and two-phase flow approaches. Environ Earth Sci 62:1197–1207

    Article  Google Scholar 

  • Wang W, Schnicke T, Kolditz O (2011) Parallel finite element method and time stepping control for non-isothermal poro-elastic problems. Comput Mate Continua 21:217–235

    Google Scholar 

  • Witterholt E, Tixier M (1972) Temperature logging in injection wells. In: Proceeding of fall meeting of the Society of Petroleum Engineers of AIME, 8-11 October 1972, San Antonio, Texas

  • Wooding RA (2006) Steady state free thermal convection of liquid in a saturated permeable medium. J Fluid Mech 2:273–285

    Article  Google Scholar 

  • Yang YM, Small MJ, Junker B, Bromhal GS, Strazisar B, Wells A (2011) Bayesian hierarchical models for soil CO2 flux and leak detection at geologic sequestration sites. Environ Earth Sci 64:787–798

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding by the German Federal Ministry of Education and Research (BMBF) in the framework of the CLEAN joint project, which is part of the geoscientific R&D program GEOTECHNOLOGIEN (results are presented in the GEOTECHNOLOGIEN Scientific Report under the publication number GEOTECH-1951). We would to like to thank Guido Blöcher for his support with the FeFlow simulation and Alissa Hafele for English correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Singh.

Appendix

Appendix

Elements of mass, advection, Laplace matrices and right hand side vectors of the Eqs. (9)–(11) are as follow:

$$ \begin{aligned} {\bf C}_{{\rm pp}} &= \int\limits_{\varvec{\Upomega}}{{\bf N}}^T\left[ n \frac{1}{\rho}\frac{\partial \rho}{\partial p}\right]{\bf N} d{\varvec{\Upomega}}\\ {\bf C}_{{\rm pT}} &= \int\limits_{\varvec{\Upomega}}{{\bf N}}^T\left[ n \frac{1}{\rho}\frac{\partial \rho}{\partial T}\right]{\bf N} d{\varvec{\Upomega}}\\ {\bf K}_{{\rm pp}}&=-\int\limits_{\varvec{\Upomega}}\left(\nabla {\bf N}\right)^T\left[\frac{{{\mathsf{k}}} k}{\mu}\right]\nabla {\bf N} d{\varvec{\Upomega}} \\ {\bf K}_{{\rm pT}}&=-\int\limits_{\varvec{\Upomega}}\left(\nabla {\bf N}\right)^T\left[0\right]\nabla {\bf N} d{\varvec{\Upomega}} \\ {\bf A}_{{\rm pp}}&=\int\limits_{\varvec{\Upomega}}{{\bf N}}^T\left[n{\bf v} \frac{1}{\rho}\frac{\partial \rho}{\partial p}\right]\nabla {\bf N} d{\varvec{\Upomega}}\\ {\bf A}_{{\rm pT}}&=\int\limits_{\varvec{\Upomega}}{{\bf N}}^T\left[n{\bf v} \frac{1}{\rho}\frac{\partial \rho}{\partial T}\right]\nabla {\bf N} d{\varvec{\Upomega}}\\ {\bf f}_{{\rm p}}&=-\int\limits_{\varvec{\Upomega}} \left(\nabla {\bf N}\right)^T \left[\frac{{{\mathsf{k}}} k}{\mu} \rho {\mathbf g}\right] d{\varvec{\Upomega}} - \int\limits_{\partial \varvec{\Upomega}} {\bf N} \left[Q_{\rm p}\right]d{\partial \varvec{\Upomega}}\\ {\bf C}_{{\rm Tp}} &= \int\limits_{\varvec{\Upomega}}{{\bf N}}^T\left[ -n T \beta_{{\rm T}}\right]{\bf N} d{\varvec{\Upomega}} \\ {\bf C}_{{\rm TT}} &= \int\limits_{\varvec{\Upomega}}{{\bf N}}^T\left[ \left(\rho c_{\rm p}\right)_{{\rm eff}}\right]{\bf N} d{\varvec{\Upomega}}\\ {\bf K}_{{\rm Tp}}&=-\int\limits_{\varvec{\Upomega}}\left(\nabla {\bf N}\right)^T\left[0\right]\nabla {\bf N} d{\varvec{\Upomega}}\\ {\bf K}_{{\rm TT}}&=-\int\limits_{\varvec{\Upomega}}\left(\nabla {\bf N}\right)^T\left[\kappa_{{\rm eff}}\right]\nabla {\bf N} d{\varvec{\Upomega}}\\ {\bf A}_{{\rm Tp}}&=\int\limits_{\varvec{\Upomega}}{{\bf N}}^T\left[n{\bf v} \left(1-T \beta_{{\rm T}}\right) \right]\nabla {\bf N} d{\varvec{\Upomega}}\\ {\bf A}_{{\rm TT}}&=\int\limits_{\varvec{\Upomega}}{{\bf N}}^T\left[n{\bf v} \rho c_{\rm p}\right]\nabla {\bf N} d{\varvec{\Upomega}}\\ {\bf f}_{{\rm T}}&=-\int\limits_{\varvec{\Upomega}}{\bf N}\left[Q_{\rm T}\right]d{\partial \varvec{\Upomega}}\\ {\bf C}_{{x_k}} &= \int\limits_{\varvec{\Upomega}}{{\bf N}}^T\left[ n \rho \right]{\bf N} d{\varvec{\Upomega}} \\ {\bf K}_{{x_k}}&=-\int\limits_{\varvec{\Upomega}}\left(\nabla {\bf N}\right)^T\left[n\rho {{{\mathsf{D}}}}\right]\nabla {\bf N} d{\varvec{\Upomega}} \\ {\bf A}_{{x_k}}&=\int\limits_{\varvec{\Upomega}}{{\bf N}}^T\left[n{\bf v} \rho \right]\nabla {\bf N} d{\varvec{\Upomega}}\\ {\bf f}_{{x_k}}&=-\int\limits_{\varvec{\Upomega}}{\bf N}\left[Q - x_{{k}} \rho Q_{\rho}\right]d{\partial \varvec{\Upomega}} \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A.K., Baumann, G., Henninges, J. et al. Numerical analysis of thermal effects during carbon dioxide injection with enhanced gas recovery: a theoretical case study for the Altmark gas field. Environ Earth Sci 67, 497–509 (2012). https://doi.org/10.1007/s12665-012-1689-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-1689-9

Keywords

Navigation