Skip to main content
Log in

Preparation of NiO nanoparticles from Ni(OH)2·NiCO3·4H2O precursor by mechanical activation

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

A mechanical activation process was introduced as a facile method for producing nickel oxide nanopowders. The precursor compound Ni(OH)2·NiCO3·4H2O was synthesized by chemical precipitation. The precursor was milled with NaCl diluent. A high-energy ball milling process led to decomposition of the precursor and subsequent dispersal in NaCl media. Nickel oxide nanocrystalline powders were produced by subsequent heat treatment and water washing. Milling rotation speed, milling time, ball-to-powder ratio (BPR), and nickel chloride-to-precursor ratio were introduced as influential parameters on the wavelength of maximum absorption (λ max). The effects of these parameters were investigated by the Taguchi method. The optimum conditions for this study were a milling rotation speed of 150 r/min, a milling time of 20 h, a BPR of 15/1, and a NaCl-to-powder weight ratio (NPR) of 6/1. In these conditions, λ max was predicted to be 292 nm. The structural properties of the samples were determined by field emission scanning electron microscopy, X-ray diffraction, and energy dispersive spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Moghaddam, S. Kolahgar-Azari, and S. Karimi, Determination of optimum conditions for nano-silver preparation from AgCl based on the taguchi design by the use of optical properties of silver, Ind. Eng. Chem. Res., 51(2012), No. 8, p. 3224.

    Article  Google Scholar 

  2. Y.H. He, K. Vinodgopal, M. Ashokkumar, and F. Grieser, Sonochemical synthesis of ruthenium nanoparticles, Res. Chem. Intermed., 32(2006), No. 8, p. 709.

    Article  Google Scholar 

  3. R.M. Kassab, K.T. Jackson, O.M. El-Kadri, and H.M. El-Kaderi, Nickel-catalyzed synthesis of nanoporous organic frameworks and their potential use in gas storage applications, Res. Chem. Intermed., 37(2011), No. 7, p. 747.

    Article  Google Scholar 

  4. D. Adler and J.J. Feinleib, Electrical and optical properties of narrow-band materials, Phys. Rev. B, 2(1970), No. 8, p. 3112.

    Article  Google Scholar 

  5. I. Hotovy, J. Huran, L. Spiess, S. Hascik, and V. Rehacek, Preparation of nickel oxide thin films for gas sensors applications, Sens. Actuators B, 57(1999), No. 1–3, p. 147.

    Article  Google Scholar 

  6. E.L. Miller and R.E. Rocheleau, Electrochemical behavior of reactively sputtered iron-doped nickel oxide, J. Electrochem. Soc., 144(1997), No. 9, p. 3072.

    Article  Google Scholar 

  7. Y.P. Wang, J.W. Zhu, X.J. Yang, L.D. Lu, and X. Wang, Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate, Thermochim. Acta, 437(2005), No. 1–2, p. 106.

    Article  Google Scholar 

  8. R.C. Makkus, K. Hemmes, and J.H.W. de Wit, A Comparative study of NiO(Li), LiFeO2, and LiCoO2 porous cathodes for molten carbonate fuel cells, J. Electrochem. Soc., 141(1994), No. 12, p. 3429.

    Article  Google Scholar 

  9. M. Ghosh, K. Biswas, A. Sundaresan, and C.N.R. Rao, MnO and NiO nanoparticles: synthesis and magnetic properties, J. Mater. Chem., 16(2006), No. 1, p. 106.

    Article  Google Scholar 

  10. X. Wang, L.J. Ye, P. Hu, and F.L. Yuan, Synthesis of single-crystalline hollow octahedral NiO, Cryst. Growth Des., 7(2007), No. 12, p. 2415.

    Article  Google Scholar 

  11. C.N. Huang, S.Y. Chen, and P. Shen, Condensation and decomposition of NiO-dissolved rutile nanospheres, J. Phys. Chem. C, 111(2007), No. 8, p. 3322.

    Article  Google Scholar 

  12. B. Zhao, X.K. Ke, J.H. Bao, C.L. Wang, L. Dong, Y.W. Chen, and H.L. Chen, Synthesis of flower-like NiO and effects of morphology on its catalytic properties, J. Phys. Chem. C, 113(2009), No. 32, p. 14440.

    Article  Google Scholar 

  13. M.S. Wu and H.H. Hsieh, Nickel oxide/hydroxide nanoplatelets synthesized by chemical precipitation for electrochemical capacitors, Electrochim. Acta, 53(2008), No. 8, p. 3427.

    Article  Google Scholar 

  14. Z.Q. Wei, H.X. Qiao, H. Yang, C.R. Zhang, and X.Y. Yan, Characterization of NiO nanoparticles by anodic arc plasma method, J. Alloys Compd., 479(2009), No. 1–2, p. 855.

    Article  Google Scholar 

  15. J.R.A. Sietsma, J.D. Meeldijk, J.P. den Breejen, M.V. Helder, A.J. van Dillen, P.E. de Jongh, and K.P. de Jong, The Preparation of supported NiO and Co3O4 nanoparticles by the nitric oxide controlled thermal decomposition of nitrates, Angew. Chem. Int. Ed., 119(2007), No. 24, p. 4631.

    Article  Google Scholar 

  16. L.X. Yang, Y.J. Zhu, H. Tong, Z.H. Liang, L. Li, and L.J. Zhang, Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol, J. Solid State Chem., 180(2007), No. 7, p. 2095.

    Article  Google Scholar 

  17. C.K. Xu, K.Q. Hong, S. Liu, G.H. Wang, and X.N. Zhao, A novel wet chemical route to NiO nanowires, J. Cryst. Growth, 255(2003), No. 3–4, p. 308.

    Article  Google Scholar 

  18. L.L. Wu, Y.S. Wu, H.Y. Wei, Y.C. Shi, and C.X. Hu, Synthesis and characteristics of NiO nanowire by a solution method, Mater. Lett., 58(2004), No. 21, p. 2700.

    Article  Google Scholar 

  19. M.B. Zheng, J.M. Cao, Y.P. Chen, X.J. Ma, S.G. Deng, and J. Tao, Facile fabrication of nickel oxide hollow spheres and amorphous carbon/nickel nanoparticles composites using colloidal carbonaceous microspheres as template, Chem. Lett., 34(2005), No. 8, p. 1174.

    Article  Google Scholar 

  20. W. Xing, F. Li, Z.F. Yan, H.M. Cheng, and G.Q. Lu, Synthesis of wormlike nanoporous nickel oxide with nanocrystalline framework for electrochemical energy storage, Int. J. Nanosci., 3(2004), No. 3, p. 321.

    Article  Google Scholar 

  21. X.M. Liu, X.G. Zhang, and S.Y. Fu, Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors, Mater. Res. Bull., 41(2006), No. 3, p. 620.

    Article  Google Scholar 

  22. L.Y. Bai, F.L. Yuan, P. Hu, S.K. Yan, X. Wang, and S.H. Li, A facile route to sea urchin-like NiO architectures, Mater. Lett., 61(2007), No. 8–9, p. 1698.

    Article  Google Scholar 

  23. X.M. Ni, Y.F. Zhang, D.Y. Tian, H.G. Zheng, and X.W. Wang, Synthesis and characterization of hierarchical NiO nanoflowers with porous structure, J. Cryst. Growth, 306(2007), No. 2, p. 418.

    Article  Google Scholar 

  24. A. Al-Hajry, A. Umar, M. Vaseem, M.S. Al-Assiri, F. El-Tantawy, M. Bououdina, S. Al-Heniti, and Y.B. Hahn, Low-temperature growth and properties of flower-shaped β-Ni(OH)2 and NiO structures composed of thin nanosheets networks, Superlattices Microstruct., 44(2008), No. 2, p. 216.

    Article  Google Scholar 

  25. L.P. Zhu, G.H. Liao, Y. Yang, H.M. Zhao, J.F. Wang, and S.Y. Fu, Self-assembled 3D flower-like hierarchical β-Ni(OH)2 hollow architectures and their in-situ thermal conversion to NiO, Nanoscale Res. Lett., 4(2009), No. 6, p. 550.

    Article  Google Scholar 

  26. H.Z. Wang and Y.T. Qian, Malic acid assisted precursor route to hierarchical structured nickel oxide, Cryst. Res. Technol., 45(2010), No. 5, p. 545.

    Article  Google Scholar 

  27. I. Hotovy, V. Rehacek, P. Siciliano, S. Capone, and L. Spiess, Sensing characteristics of NiO thin films as NO2 gas sensor, Thin Solid Films, 418(2002), No. 1, p. 9.

    Article  Google Scholar 

  28. T.Y. Kim, J.Y. Kim, S.H. Lee, H.W. Shim, S.H. Lee, E.K. Suh, and K.S. Nahm, Characterization of ZnO needle-shaped nanostructures grown on NiO catalyst-coated Si substrates, Synth. Met., 144(2004), No. 1, p. 61.

    Article  Google Scholar 

  29. F. Li, H.Y. Chen, C.M. Wang, and K.A. Hu, A novel modified NiO cathode for molten carbonate fuel cells, J. Electroanal. Chem., 531(2002), No. 1, p. 53.

    Article  Google Scholar 

  30. M. Salavati-Niasari, N. Mir, and F. Davar, A novel precursor in preparation and characterization of nickel oxide nanoparticles via thermal decomposition approach, J. Alloys Compd., 493(2010), No. 1–2, p. 163.

    Article  Google Scholar 

  31. S.A. Needham, G.X. Wang, and H.K. Liu, Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries, J. Power Sources, 159(2006), No. 1, p. 254.

    Article  Google Scholar 

  32. T. Tsuzuki and P.G. McCormick, Mechanochemical synthesis of nanoparticles, J. Mater. Sci., 39(2004), No. 16–17, p. 5143.

    Article  Google Scholar 

  33. T. Tsuzuki, J.S. Robinson, and P.G. McCormick, UV-Shielding ceramic nanoparticles synthesized by mechanochemical processing, J. Aust. Ceram. Soc., 38(2002), No. 1, p. 15.

    Google Scholar 

  34. R. Aghababazadeh, B. Mazinani, A. Mirhabibi, and M. Tamizifar, ZnO nanoparticles synthesised by mechanochemical processing, J. Phys. Conf. Ser., 26(2006), No. 1, p. 312.

    Article  Google Scholar 

  35. B. Fotoohi, A Study of Mechanochemical Activation in Solid-State Synthesis of Advanced Ceramic Composites [Dissertation], University of Birmingham, Birmingham, 2010.

    Google Scholar 

  36. G.J.C. Carpenter and Z.S. Wronski, Nanocrystalline NiO and NiO-Ni(OH)2 composite powders prepared by thermal and mechanical dehydroxylation of nickel hydroxide, Nanostruct. Mater., 11(1999), No. 1, p. 67.

    Article  Google Scholar 

  37. B.D. Cullity, Elements of X-ray Diffraction, Second edition, Addison-Wesley, Reading, Massachusetts, 1978, p. 37–68.

    Google Scholar 

  38. C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci., 46(2001), No. 1–2, p. 1.

    Article  Google Scholar 

  39. M.A. Gondal, T.A. Saleh, and Q.A. Drmosh, Synthesis of nickel oxide nanoparticles using pulsed laser ablation in liquids and their optical characterization, Appl. Surf. Sci., 258(2012), No. 18, p. 6982.

    Article  Google Scholar 

  40. K. Anandan and V. Rajendran, Morphological and size effects of NiO nanoparticles via solvothermal process and their optical properties, Mater. Sci. Semicond. Process., 14(2011), No. 1, p. 43.

    Article  Google Scholar 

  41. Y.G. Liu, Z.Y. Tang, Q. Xu, X.Y. Zhang, and Y. Liu, Ni(OH)2 particles synthesized by high energy ball milling, Trans. Nonferrous Met. Soc. China, 16(2006), No. 5, p. 1218.

    Article  Google Scholar 

  42. A.D. Paola, E. García-López, G. Marcì, and L. Palmisano, A survey of photocatalytic materials for environmental remediation, J. Hazard. Mater., 211–212(2012), No. 11, p. 3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Moghaddam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadisoltansaraei, K., Moghaddam, J. Preparation of NiO nanoparticles from Ni(OH)2·NiCO3·4H2O precursor by mechanical activation. Int J Miner Metall Mater 21, 726–735 (2014). https://doi.org/10.1007/s12613-014-0964-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-0964-z

Keywords

Navigation