Skip to main content
Log in

Inhibition of Bacillus cereus Strains by Antimicrobial Metabolites from Lactobacillus johnsonii CRL1647 and Enterococcus faecium SM21

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Bacillus cereus is an endospore-forming, Gram-positive bacterium able to cause foodborne diseases. Lactic acid bacteria (LAB) are known for their ability to synthesize organic acids and bacteriocins, but the potential of these compounds against B. cereus has been scarcely documented in food models. The present study has examined the effect of the metabolites produced by Lactobacillus johnsonii CRL1647 and Enterococcus faecium SM21 on the viability of select B. cereus strains. Furthermore, the effect of E. faecium SM21 metabolites against B. cereus strains has also been investigated on a rice food model. L. johnsonii CRL1647 produced 128 mmol/L of lactic acid, 38 mmol/L of acetic acid and 0.3 mmol/L of phenyl-lactic acid. These organic acids reduced the number of vegetative cells and spores of the B. cereus strains tested. However, the antagonistic effect disappeared at pH 6.5. On the other hand, E. faecium SM21 produced only lactic and acetic acid (24.5 and 12.2 mmol/L, respectively) and was able to inhibit both vegetative cells and spores of the B. cereus strains, at a final fermentation pH of 5.0 and at pH 6.5. This would indicate the action of other metabolites, different from organic acids, present in the cell-free supernatant. On cooked rice grains, the E. faecium SM21 bacteriocin(s) were tested against two B. cereus strains. Both of them were significantly affected within the first 4 h of contact; whereas B. cereus BAC1 cells recovered after 24 h, the effect on B. cereus 1 remained up to the end of the assay. The LAB studied may thus be considered to define future strategies for biological control of B. cereus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tallent SM, Kotewicz KM, Strain EA, Bennett RW (2012) Efficient isolation and identification of Bacillus cereus group. J AOAC Int 95:446–451

    Article  CAS  Google Scholar 

  2. Stenfors Arnesen LP, Fagerlund A, Granum PE (2009) From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev 32:579–606

    Article  Google Scholar 

  3. Black EP, Linton M, McCall RD, Curran W, Fitzgerald GF, Kelly AL, Patterson MF (2008) The combined effects of high pressure and nisin on germination and inactivation of Bacillus spores in milk. J Appl Microbiol 105:78–87

    Article  CAS  Google Scholar 

  4. Kotiranta A, Lounatmaa K, Haapasalo M (2000) Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect 2:189–198

    Article  CAS  Google Scholar 

  5. Haque A, Russell N (2005) Phenotypic and genotypic characterization of Bacillus cereus isolates from Bangladeshi rice. Int J Food Microbiol 98:23–34

    Article  CAS  Google Scholar 

  6. EFSA (2005) European food safety authority. Bacillus cereus and other Bacillus spp. In foodstuffs. EFSA J 175:1–48

    Google Scholar 

  7. Chang H, Lee J, Han B, Kwak T, Kim J (2011) Prevalence of the levels of Bacillus cereus in fried rice dishes and its exposure assessment from Chinese-style restaurants. Food Sci Biotechnol 20:1351–1359

    Article  Google Scholar 

  8. Bennett SD, Walsh KA, Gould LH (2013) Foodborne disease outbreaks caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus–United States, 1998–2008. Clin Infect Dis 57:425–433

    Article  Google Scholar 

  9. CGA, Control Government Agency. 2011. Enfermedades transmitidas por alimentos. http://www.agcontrol.gob.ar/pdf/Que-son-las-ETA.pdf. Access May 2014

  10. Galvez A, Abriouel H, Benomar N, Lucas R (2010) Microbial antagonists to food-borne pathogens and biocontrol. Curr Opin Biotechnol 21:142–148

    Article  CAS  Google Scholar 

  11. Galvez A, Abriouel H, Lopez RL, Omar NB (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70

    Article  CAS  Google Scholar 

  12. Ross RP, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79:3–16

    Article  CAS  Google Scholar 

  13. Settanni L, Corsetti A (2008) Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol 121:123–138

    Article  CAS  Google Scholar 

  14. Abriouel H, Maqueda M, Galvez A, Martinez-Bueno M, Valdivia E (2002) Inhibition of bacterial growth, enterotoxin production, and spore outgrowth in strains of Bacillus cereus by bacteriocin AS-48. Appl Environ Microbiol 68:1473–1477

    Article  CAS  Google Scholar 

  15. Garca MT, Ben Omar N, Lucas R, Pérez-Pulido R, Castro A, Grande MJ, Martínez-Cañamero M, Gálvez A (2003) Antimicrobial activity of enterocin EJ97 on Bacillus coagulans CECT 12. Food Microbiol 20:533–536

    Article  Google Scholar 

  16. Chen YS, Yanagida F, Srionnual S (2006) Characteristics of bacteriocin-like inhibitory substances from dochi-isolated Enterococcus faecium D081821 and D081833. Lett Appl Microbiol 44:320–325

    Article  Google Scholar 

  17. Do Nascimento M, Moreno I, Kuaye AY (2010) Antimicrobial activity of Enterococcus faecium FAIR-E 198 against gram-positive pathogens. Braz J Microbiol 41:74–81

    Article  Google Scholar 

  18. Huang E, Zhang L, Chung YK, Zheng Z, Yousef AE (2013) Characterization and Application of Enterocin RM6, a Bacteriocin from Enterococcus faecalis. BioMed Res Int http://dx.doi.org/10.1155/2013/206917. Access, Jun 2014

  19. Vessoni P, Moraes DA, Fajardo DN (2002) The effect of nisin on growth kinetics from activated Bacillus cereus spores in cooked rice and in milk. J Food Prot 65:419–422

    Google Scholar 

  20. Muñoz A, Maqueda M, Gálvez A, Martínez-Bueno M, Rodríguez A, Valdivia E (2004) Biocontrol of psychrotrophic enterotoxigenic Bacillus cereus in a nonfat hard cheese by an enterococcal strain-producing enterocin AS-48. J Food Prot 67:1517–1521

    Google Scholar 

  21. Grande MJ, Lucas R, Abriouel H, Valdivia E, Omar NB, Maqueda M, Martinez-Bueno M, Martinez-Canamero M, Galvez A (2006) Inhibition of toxicogenic Bacillus cereus in rice-based foods by enterocin AS-48. Int J Food Microbiol 106:185–194

    Article  CAS  Google Scholar 

  22. Grande MJ, Lucas R, Valdivia E, Abriouel H, Maqueda M, Omar NB, Martínez-Cañamero M, Gálvez A (2005) Stability of enterocin AS-48 in fruit and vegetable juices. J Food Prot 68:2085–2094

    CAS  Google Scholar 

  23. Ibarguren C, Raya RR, Apella MC, Audisio MC (2010) Enterococcus faecium isolated from honey synthesized bacteriocin-like substances active against different Listeria monocytogenes strains. J Microbiol 48:44–52

    Article  CAS  Google Scholar 

  24. Porrini MP, Audisio MC, Sabaté DC, Ibarguren C, Medici SK, Sarlo EG, Garrido PM, Eguaras MJ (2010) Effect of bacterial metabolites on microsporidian Nosema ceranae and on its host Apis mellifera. Parasitol Res 107:381–388

    Article  Google Scholar 

  25. Audisio CM, Torres MJ, Sabaté DC, Ibarguren C, Apella MC (2011) Properties of different lactic acid bacteria isolated from Apis mellifera L. bee-gut. Microbiol Res 166:1–13

    Article  Google Scholar 

  26. Audisio C, Apella M (2006) Caracterización de cepas de Lactobacillus aisladas del intestino de la abeja Apis mellifera L., II Simposio Internacional de Bacterias Lácticas y Primer Encuentro red BAL (Bacterias Lácticas). Tucumán (Argentina)

  27. Matarante A, Baruzzi F, Cocconcelli PS, Morea M (2004) Genotyping and toxigenic potential of Bacillus subtilis and Bacillus pumilus strains occurring in industrial and artisanal cured sausages. Appl Environ Microbiol 70:5168–5176

    Article  CAS  Google Scholar 

  28. Tagg J, McGiven A (1971) Assay system for bacteriocins. Appl Microbiol 21:943

    CAS  Google Scholar 

  29. Audisio MC, Terzolo HR, Apella MC (2005) Bacteriocin from honeybee beebread Enterococcus avium, active against Listeria monocytogenes. Appl Environ Microbiol 71:3373–3375

    Article  CAS  Google Scholar 

  30. Jaquette CB, Beuchat LR (1998) Combined effects of pH, nisin, and temperature on growth and survival of psychrotrophic Bacillus cereus. J Food Prot 61:563–570

    CAS  Google Scholar 

  31. Daeschel MA, Klaenhammer TR (1985) Association of a 13.6-megadalton plasmid in Pediococcus pentosaceus with bacteriocin activity. Appl Environ Microbiol 50:1538–1541

    CAS  Google Scholar 

  32. Piard J, Desmazeaud M (1991) Inhibiting factors produced by lactic acid bacteria. 1. Oxygen metabolites and catabolism end-products. Le Lait 71:525–541

    Article  CAS  Google Scholar 

  33. Piard J, Desmazeaud M (1992) Inhibiting factors produced by lactic acid bacteria. 2. Bacteriocins and other antibacterial substances. Le Lait 72:113–142

    Article  CAS  Google Scholar 

  34. Adams MR, Nicolaides L (1997) Review of the sensitivity of different foodborne pathogens to fermentation. Food Control 8:227–239

    Article  Google Scholar 

  35. Cintas LM, Casaus MP, Herranz C, Nes IF, Hernández PE (2001) Review: Bacteriocins of lactic acid bacteria. Food Sci Technol Int 7:281–305

    Article  CAS  Google Scholar 

  36. Wong HC, Chen YL (1988) Effects of lactic acid bacteria and organic acids on growth and germination of Bacillus cereus. Appl Environ Microbiol 54:2179–2184

    CAS  Google Scholar 

  37. Rukure G, Bester BH (2001) Survival and growth of Bacillus cereus during Gouda cheese manufacturing. Food Control 12:31–36

    Article  Google Scholar 

  38. Little C, Knøchel S (1994) Growth and survival of Yersinia enterocolitica, Salmonella and Bacillus cereus in Brie stored at 4, 8 and 20°C. Int J Food Microbiol 24:137–145

    Article  CAS  Google Scholar 

  39. Røssland E, Andersen Borge GI, Langsrud T, Sorhaug T (2003) Inhibition of Bacillus cereus by strains of Lactobacillus and Lactococcus in milk. Int J Food Microbiol 79:3–16

    Google Scholar 

  40. Nout MJR, Beernink G, Bonants-van Laarhoven TMG (1987) Growth of Bacillus cereus in soyabean tempeh. Int J Food Microbiol 4:293–301

    Article  Google Scholar 

  41. Aryanta RW, Fleet GH, Buckle KA (1991) The occurrence and growth of microorganisms during the fermentation of fish sausage. Int J Food Microbiol 13:143–155

    Article  CAS  Google Scholar 

  42. Kingamkono R, Sjögren E, Svanberg U, Kaijser B (1994) pH and acidity in lactic-fermenting cereal gruels: effects on viability of enteropathogenic microorganisms. World J Microbiol Biotechnol 10:664–669

    Article  CAS  Google Scholar 

  43. Cho IJ, Lee NK, Hahm YT (2009) Characterization of Lactobacillus spp. isolated from the feces of breast-feeding piglets. J Biosci Bioeng 108:194–198

    Article  CAS  Google Scholar 

  44. Ennahar S, Aoude-Werner D, Assobhei O, Hasselmann C (1998) Antilisterial activity of enterocin 81, a bacteriocin produced by Enterococcus faecium WHE 81 isolated from cheese. J Appl Microbiol 85:521–526

    Article  CAS  Google Scholar 

  45. Huang E, Zhang L, Chung Y K, Zheng Z and Yousef AE (2013) Characterization and Application of Enterocin RM6, a Bacteriocin from Enterococcus faecalis. BioMed Res Int http://dx.doi.org/10.1155/2013/206917. Access, Jun 2014

  46. Ozdemir GB, Oryaşın E, Bıyık HH, Ozteber M, Bozdoğan B (2011) Phenotypic and genotypic characterization of bacteriocins in enterococcal isolates of different sources. Indian J Microbiol 51:182–187

    Article  CAS  Google Scholar 

  47. Banwo K, Sanni A, Tan H (2013) Technological properties and probiotic potential of Enterococcus faecium strains isolated from cow milk. J Appl Microbiol 114:229–241

    Article  CAS  Google Scholar 

  48. Setlow P (2006) Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol 101:514–525

    Article  CAS  Google Scholar 

  49. Sonenshein AL, Hoch JA, Losick R (2001) Bacillus subtilis and its closest relatives. ASM Press, Washington

    Google Scholar 

  50. van Melis CC, Nierop Groot MN, Tempelaars MH, Moezelaar R, Abee T (2011) Characterization of germination and outgrowth of sorbic acid-stressed Bacillus cereus ATCC 14579 spores: phenotype and transcriptome analysis. Food Microbiol 28:275–283

    Article  Google Scholar 

  51. Requena T, Peláez C (1995) Actividad antimicrobiana de bacterias lácticas. Producción de bacteriocinas. Rev Esp Cienc Tecnol 35:19–44

    CAS  Google Scholar 

  52. Djaafar T, Rahayu E, Wibowo D, Sudarmardji S (1996) Antimicrobial substance produced by Lactobacillus sp. TGR-2 isolated from Growol. Indones Food Nutr Prog 3:29–34

    Google Scholar 

  53. Helander IM, von Wright A, Mattila-Sandholm TM (1997) Potential of lactic acid bacteria and novel antimicrobials against Gram-negative bacteria. Trends Food Sci Technol 8:146–150

    Article  CAS  Google Scholar 

  54. Logan NA, De Vos P (2009) Genus Bacillus Cohn, 1872. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3. Springer, New York, pp 21–128

    Google Scholar 

  55. Hofvendahl K, Hahn-Hagerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microbiol Technol 26:87–107

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CIUNSa (PI 1974) and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) of Argentina for the financial support (PICT2011-0767). M.C. Soria thanks Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) for her fellowship. M.C. Audisio is a member of the Research Career of CONICET.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Carina Audisio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soria, M.C., Audisio, M.C. Inhibition of Bacillus cereus Strains by Antimicrobial Metabolites from Lactobacillus johnsonii CRL1647 and Enterococcus faecium SM21. Probiotics & Antimicro. Prot. 6, 208–216 (2014). https://doi.org/10.1007/s12602-014-9169-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-014-9169-z

Keywords

Navigation