Skip to main content
Log in

An edge-based smoothed finite element method (ES-FEM) for dynamic analysis of 2D Fluid-Solid interaction problems

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The paper presents an extension of the Edge-based Smoothed Finite Element Method (ES-FEM-T3) using triangular elements for the dynamic response analysis of two-dimension fluid-solid interaction problems based on the pressure-displacement formulation. In the proposed method, both the displacement in the solid domain and the pressure in the fluid domain are smoothed by the gradient smoothing technique based on the smoothing domains associated with the edges of the triangular elements. Thanks to the softening effect of the gradient smoothing technique used in the ES-FEM-T3, the numerical solutions for the coupled systems by the ES-FEMT3 are improved significantly compared to those by some other existing FEM methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bathe, K. J., Nitikitpaiboon, C., and Wang, X. (1995). “A mixed displacement-based finite element formulation for acoustic fluidstructure interaction.” Computers and Structures, Vol. 56, Nos. 2–3, pp. 225–237.

    Article  MATH  MathSciNet  Google Scholar 

  • Brunner, D., Junge, M., and Gaul, L. (2009). “A comparison of FE–BE coupling schemes for large-scale problems with fluid–structure interaction.” International Journal for Numerical Methods in Engineering, Vol. 77, No. 5, pp. 664–688.

    Article  MATH  MathSciNet  Google Scholar 

  • Carlsson, H. (1992). Finite element analysis of structure-acoustic systems; formulations and solution strategies, PhD Thesis, Lund University, Lund, Sweden.

    Google Scholar 

  • Chen, H. C. and Taylor, R. L. (1990). “Vibration analysis of fluid-solid systems using a finite element displacement formulation.” International Journal for Numerical Methods in Engineering, Vol. 29, No. 4, pp. 683–698.

    Article  MATH  Google Scholar 

  • Chen, J. S., Wu, C. T., Yoon, S., and You, Y. (2001). “A stabilized conforming nodal integration for Galerkin mesh-free methods.” International Journal for Numerical Methods in Engineering, Vol. 50, No. 2, pp. 435–466.

    Article  MATH  Google Scholar 

  • Dai, K. Y., Liu, G. R., and Nguyen, T. T. (2007). “An n-sided polygonal Smoothed Finite Element Method (nSFEM) for solid mechanics.” Finite Elements in Analysis and Design, Vol. 43, Nos. 11–12, pp. 847–860.

    Article  MathSciNet  Google Scholar 

  • Everstine, G. C. and Henderson, F. M. (1990). “Coupled finite element/boundary element approach for fluid structure interaction.” The Journal of the Acoustical Society of America, Vol. 87, No. 5, pp. 1938–1947.

    Article  Google Scholar 

  • He, Z. C., Liu, G. R., Zhong, Z. H., Zhang, G. Y., and Cheng, A. G. (2010). “Coupled analysis of 3D structural–acoustic problems using the edge-based smoothed finite element method/finite element method.” Finite Elements in Analysis and Design, Vol. 46, No.12, pp. 1114–1121.

    Article  MathSciNet  Google Scholar 

  • Liu, G. R., Dai, K. Y., and Nguyen-Thoi, T. (2007a). “A smoothed finite element method for mechanics problems.” Computational Mechanics, Vol. 39, No. 6, pp. 859–877.

    Article  MATH  Google Scholar 

  • Liu, G. R., Nguyen-Thoi, T., Dai, K. Y., and Lam, K. Y. (2007b). “Theoretical aspects of the Smoothed Finite Element Method (SFEM).” International Journal for Numerical Methods in Engineering, Vol. 71, No. 8, pp. 902–930.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, G. R., Nguyen-Thoi, T., Nguyen-Xuan, H., and Lam, K. Y. (2009a). “A Node based Smoothed Finite Element Method (NS-FEM) for upper bound solution to solid mechanics problems.” Computers and Structures, Vol. 87, Nos. 1–2, pp. 14–26.

    Article  Google Scholar 

  • Liu, G. R., Nguyen-Thoi, T., and Lam, K. Y. (2009b). “An Edge-based Smoothed Finite Element Method (ES-FEM) for static, free and forced vibration analyses of solids.” Journal of Sound and Vibration, Vol. 320, Nos. 4–5, pp. 1100–1130.

    Article  Google Scholar 

  • Liu, G. R., Nguyen-Thoi, T., Nguyen-Xuan, H., Dai, K. Y., and Lam, K. Y. (2009c). “On the essence and the evaluation of the shape functions for the Smoothed Finite Element Method (SFEM)” International Journal for Numerical Methods in Engineering, Vol. 77, No. 13, pp. 1863–1869.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, G. R. and Nguyen-Thoi, T. (2010). Smoothed finite element methods, CRC Press, Taylor and Francis Group, New York.

    Book  Google Scholar 

  • Liu, G. R., Nguyen-Xuan, H., and Nguyen-Thoi, T. (2010a). “A theoretical study on the Smoothed FEM (S-FEM) models: Properties, accuracy and convergence rates.” International Journal for Numerical Methods in Engineering, Vol. 84, No. 10, pp. 1222–1256.

    Article  MATH  MathSciNet  Google Scholar 

  • Liu, G. R., Chen, L., Nguyen-Thoi, T., Zeng, K., and Zhang, G. Y. (2010b). “A novel singular node-based smoothed finite element method (NSFEM) for upper bound solutions of cracks.” International Journal for Numerical Methods in Engineering, Vol. 83, No. 11, pp. 1466–1497.

    Article  MATH  MathSciNet  Google Scholar 

  • Luong-Van, H., Nguyen-Thoi, T., Liu, G. R., and Phung-Van, P. (2013). “A Cell-based smoothed Finite Element Method using Mindlin plate element (CS-FEM-MIN3) for dynamic response of composite plates on viscoelastic foundation.” Engineering Analysis with Boundary Elements, Vol. 42, pp. 8–19.

    Article  MathSciNet  Google Scholar 

  • Nguyen-Thoi, T., Liu, G. R., Dai, K. Y., and Lam, K. Y. (2007). “Selective smoothed finite element method.” Tsinghua Science and Technology, Vol. 12, No. 5, pp. 497–508.

    Article  MathSciNet  Google Scholar 

  • Nguyen-Thoi, T., Liu, G. R., and Nguyen-Xuan, H. (2009a). “Additional properties of the Node-based Smoothed Finite Element Method (NS-FEM) for solid mechanics problems.” International Journal of Computational Methods, Vol. 6, No. 4, pp. 633–666.

    Article  MathSciNet  Google Scholar 

  • Nguyen-Thoi, T., Liu, G. R., Vu-Do, H. C., and Nguyen-Xuan, H. (2009b). “An Edge–based Smoothed Finite Element Method (ESFEM) for visco-elastoplastic analyses of 2D solids using triangular mesh.” Computational Mechanics, Vol. 45, No. 1, pp. 23–44.

    Article  MATH  MathSciNet  Google Scholar 

  • Nguyen-Thoi, T., Liu, G. R., Lam, K. Y., and Zhang, G. Y. (2009c). “A Face-based Smoothed Finite Element Method (FS-FEM) for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral elements.” International Journal for Numerical Methods in Engineering, Vol. 78, No. 3, pp. 324–353.

    Article  MATH  MathSciNet  Google Scholar 

  • Nguyen-Thoi, T., Vu-Do, H. C., Rabczuk, T., and Nguyen-Xuan, H. (2010a). “A Node-based Smoothed Finite Element Method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes.” Computer Methods in Applied Mechanics and Engineering, Vol. 199, Nos. 45–48, pp. 3005–3027.

    Article  MATH  MathSciNet  Google Scholar 

  • Nguyen-Thoi, T., Liu, G. R., and Nguyen-Xuan, H. (2010b). “An nsided polygonal Edge-based Smoothed Finite Element Method (nES-FEM) for solid mechanics.” Communications in Numerical Methods in Engineering, Vol. 27, No. 9, pp. 1446–1472.

    MathSciNet  Google Scholar 

  • Nguyen-Thoi, T., Phung-Van, P., Nguyen-Xuan, H., and Thai-Hoang, C. (2012). “A cell-based smoothed discrete shear gap method using triangular elements for static and free vibration analyses of Reissner–Mindlin plates.” International Journal for Numerical Methods in Engineering, Vol. 91, No. 7, pp. 705–741.

    Article  MATH  MathSciNet  Google Scholar 

  • Nguyen-Thoi, T., Phung-Van, P., Luong-Van, H., Nguyen-Van, H., and Nguyen-Xuan, H. (2013a). “A Cell-Based smoothed three-node Mindlin plate element (CS-MIN3) for static and free vibration analyses of plates.” Computational Mechanics, Vol. 50, No. 1, pp. 65–81.

    Article  MathSciNet  Google Scholar 

  • Nguyen-Thoi, T., Bui-Xuan, T., Phung-Van, P., Nguyen-Xuan, H., and Ngo-Thanh, P. (2013b). “Static, free vibration and buckling analyses of stiffened plates by CS-FEM-DSG3 using triangular elements.” Computers & Structures, Vol. 125, pp. 100–113.

    Article  Google Scholar 

  • Nguyen-Thoi, T., Phung-Van, P., Thai-Hoang, C., and Nguyen-Xuan, H. (2013c). “A Cell-based Smoothed Discrete Shear Gap method (CSFEM- DSG3) using triangular elements for static and free vibration analyses of shell structures.” International Journal of Mechanical Sciences, Vol. 74, pp. 32–45.

    Article  Google Scholar 

  • Nguyen-Thoi, T., Phung-Van, P., Nguyen-Hoang, S., and Lieu-Xuan, Q. (2014). “A smoothed coupled NS/nES-FEM for dynamic analysis of 2D fluid-solid interaction problems.” Applied Mathematics and Computation, Vol. 232, pp. 324–346.

    Article  MathSciNet  Google Scholar 

  • Nguyen-Xuan, H., Liu, G. R., Nguyen-Thoi, T., and Nguyen-Tran, C. (2009a). “An Edge–based Smoothed Finite Element Method (ESFEM) for analysis of two–dimensional piezoelectric structures.” Smart Materials and Structures, Vol. 18, No. 6, pp. 065015.

    Article  Google Scholar 

  • Nguyen-Xuan, H., Liu, G. R., Thai-Hoang, C., and Nguyen-Thoi, T. (2009b). “An edge-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates.” Computer Methods in Applied Mechanics and Engineering, Vol. 199, Nos. 9–12, pp. 471–489.

    MathSciNet  Google Scholar 

  • Nguyen-Xuan, H., Tran, L. V., Thai, C. H., and Nguyen-Thoi, T. (2012). “Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing.” Thin-Walled Structures, Vol. 54, pp. 1–18.

    Article  Google Scholar 

  • Phung-Van, P., Nguyen-Thoi, T., Tran, V. Loc, and Nguyen-Xuan, H. (2013a). “A Cell-based Smoothed Discrete Shear Gap Method (CSFEM- DSG3) based on the C0-type higher-order shear deformation theory for static and free vibration analyses of functionally graded plates.” Computational Materials Science, Vol. 79, pp. 857–872.

    Article  Google Scholar 

  • Phung-Van, P., Nguyen-Thoi, T., Le-Dinh, T., and Nguyen-Xuan, H. (2013b). “Static, free vibration analyses and dynamic control of composite plates integrated with piezoelectric sensors and actuators by the Cell-based Smoothed Discrete Shear Gap Method (CS-FEMDSG3).” Smart Materials and Structures, Vol. 22, No. 9.

    Google Scholar 

  • Rabczuk, T., Gracie, R., Song, J. H., and Belytschko, T. (2010). “Immersed particle method for fluid-structure interaction.” International Journal for Numerical Methods in Engineering, Vol. 81, No. 1, pp. 48–71.

    MATH  MathSciNet  Google Scholar 

  • Smith, I. M. and Griffiths, D. V. (1998). Programming the finite element method, Third Ed. Wiley, New York.

    Google Scholar 

  • Thai, H. C., Tran, V. L., Tran, T. D., Nguyen-Thoi, T., and Nguyen-Xuan, H. (2012). “Analysis of laminated composite plates using higher-order shear deformation plate theory and node-based smoothed discrete shear gap method.” Applied Mathematical Modelling, Vol. 36, No. 11, pp. 5657–5677.

    Article  MATH  MathSciNet  Google Scholar 

  • Wall, W. A. and Rabczuk, T. (2008). “Fluid-structure interaction in lower airways of CT-based lung geometries.” International Journal for Numerical Methods in Fluids, Vol. 57, No. 5, pp. 653–675.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, X. D. and Bathe, K. J. (1997). “Displacement pressure based mixed finite element formulations for acoustic fluid–structure interaction problems.” International Journal for Numerical Methods in Engineering, Vol. 40, No. 11, pp. 2001–2017.

    Article  MATH  Google Scholar 

  • Wilson, E. L. and Khalvati, M. (1983). “Finite elements for the dynamic analysis of fluid-solid systems.” International Journal for Numerical Methods in Engineering, Vol. 19, No. 11, pp. 1657–1668.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Nguyen-Thoi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen-Thoi, T., Phung-Van, P., Ho-Huu, V. et al. An edge-based smoothed finite element method (ES-FEM) for dynamic analysis of 2D Fluid-Solid interaction problems. KSCE J Civ Eng 19, 641–650 (2015). https://doi.org/10.1007/s12205-015-0293-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0293-4

Keywords

Navigation