Skip to main content

Advertisement

Log in

Tissue-Engineered Regeneration of Hemisected Spinal Cord Using Human Endometrial Stem Cells, Poly ε-Caprolactone Scaffolds, and Crocin as a Neuroprotective Agent

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Loss of motor and sensory function as a result of neuronal cell death and axonal degeneration are the hallmarks of spinal cord injury. To overcome the hurdles and achieve improved functional recovery multiple aspects, it must be taken into account. Tissue engineering approaches by coalescing biomaterials and stem cells offer a promising future for treating spinal cord injury. Here we investigated human endometrial stem cells (hEnSCs) as our cell source. Electrospun poly ε-caprolactone (PCL) scaffolds were used for hEnSC adhesion and growth. Scanning electron microscopy (SEM) confirmed the attachment and survival of stem cells on the PCL scaffolds. The scaffold-stem cell construct was transplanted into the hemisected spinal cords of adult male rats. Crocin, an ethanol-extractable component of Crocus sativus L., was administered to rats for 15 consecutive days post injury. Neurite outgrowth and axonal regeneration were investigated using immunohistochemical staining for neurofilament marker NF-H and luxol-fast blue (LFB) staining, respectively. TNF-α staining was performed to determine the inflammatory response in each group. Functional recovery was assessed via the Basso-Beattie-Bresnahan (BBB) scale. Results showed that PCL scaffolds seeded with hEnSCs restored the continuity of the damaged spinal cord and decreased cavity formation. Additionally, hEnSC-seeded scaffolds contributed to the functional recovery of the spinal cord. Hence, hEnSC-seeded PCL scaffolds may serve as promising transplants for spinal cord tissue engineering purposes. Furthermore, crocin had an augmenting effect on spinal cord regeneration and proved to exert neuroprotective effects on damaged neurons and may be further studied as a promising drug for spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Houle JD, Tessler A (2003) Repair of chronic spinal cord injury. Exp Neurol 182(2):247–260

    Article  PubMed  Google Scholar 

  2. Jia Y, Wu D, Zhang R, Shuang W, Sun J, Hao H, An Q, Liu Q (2014) Bone marrow-derived mesenchymal stem cells expressing the Shh transgene promotes functional recovery after spinal cord injury in rats. Neurosci Lett 573:46–51

    Article  CAS  PubMed  Google Scholar 

  3. Schwab ME (2002) Repairing the injured spinal cord. Science 295(5557):1029–1031

    Article  CAS  PubMed  Google Scholar 

  4. Thuret S, Moon LDF, Gage FH (2006) Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 7(8):628–643

    Article  CAS  PubMed  Google Scholar 

  5. Snyder EY, Teng YD (2012) Stem cells and spinal cord repair. N Engl J Med 366(20):1940–1942

    Article  CAS  PubMed  Google Scholar 

  6. Ramón-Cueto A, Plant GW, Avila J, Bunge MB (1998) Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J Neurosci 18(10):3803–3815

    PubMed  Google Scholar 

  7. Tian D, Dong Q, Pan D, He Y, Yu Z, Xie M, Wang W (2007) Attenuation of astrogliosis by suppressing of microglial proliferation with the cell cycle inhibitor olomoucine in rat spinal cord injury model. Brain Res 1154:206–214

    Article  CAS  PubMed  Google Scholar 

  8. Buss A, Brook GA, Kakulas B, Martin D, Franzen R, Schoenen J, Noth J, Schmitt AB (2004) Gradual loss of myelin and formation of an astrocytic scar during Wallerian degeneration in the human spinal cord. Brain J Neurol 127(Pt 1):34–44

    Article  CAS  Google Scholar 

  9. Zhu T, Tang Q, Gao H, Shen Y, Chen L, Zhu J (2014) Current status of cell-mediated regenerative therapies for human spinal cord injury. Neurosci Bull 30(4):671–682

    Article  CAS  PubMed  Google Scholar 

  10. Blits B, Bunge MB (2006) Direct gene therapy for repair of the spinal cord. J Neurotrauma 23(3–4):508–520

    Article  PubMed  Google Scholar 

  11. Lu Y, Wang MY (2012) Neural stem cell grafts for complete spinal cord injury. Neurosurgery 71(6):N13–N15

    Article  PubMed  Google Scholar 

  12. Shrestha B, Coykendall K, Li Y, Moon A, Priyadarshani P, Yao L (2014) Repair of injured spinal cord using biomaterial scaffolds and stem cells. Stem Cell Res Ther 5(4):91

    Article  PubMed  PubMed Central  Google Scholar 

  13. Huang Y-C, Huang Y-Y (2006) Biomaterials and strategies for nerve regeneration. Artif Organs 30(7):514–522

    Article  PubMed  Google Scholar 

  14. Zeng X, Zeng Y, Ma Y, Lu L, Du B, Zhang W, Li Y, Chan WY (2011) Bone marrow mesenchymal stem cells in a three-dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis, and reduce cavity formation in experimental spinal cord injury. Cell Transplant 20(11–12):1881–1899

    Article  PubMed  Google Scholar 

  15. Massumi M, Abasi M, Babaloo H, Terraf P, Safi M, Saeed M, Barzin J, Zandi M, Soleimani M (2012) The effect of topography on differentiation fates of matrigel-coated mouse embryonic stem cells cultured on PLGA nanofibrous scaffolds. Tissue Eng Part A 18(5–6):609–620

    Article  CAS  PubMed  Google Scholar 

  16. Liu C, Huang Y, Pang M, Yang Y, Li S, Liu L, Shu T, Zhou W, Wang X, Rong L, Liu B (2015) Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (Lactide-Co-Glycolide)/polyethylene glycol scaffolds. PLoS One 10(3):e0117709

    Article  PubMed  PubMed Central  Google Scholar 

  17. Niu W, Zeng X (2015) The application of stem cell based tissue engineering in spinal cord injury repair. J. Tissue Sci Eng 6(3)

  18. Terraf P, Babaloo H, Kouhsari S M (2016) Directed differentiation of dopamine-secreting cells from Nurr1/GPX1 expressing murine embryonic stem cells cultured on matrigel-coated PCL scaffolds. Mol Neurobiol

  19. Salgado AJ, Oliveira JM, Martins A, Teixeira FG, Silva NA, Neves NM, Sousa N, Reis RL (2013) Tissue engineering and regenerative medicine: past, present, and future. Int Rev Neurobiol 108:1–33

    Article  CAS  PubMed  Google Scholar 

  20. Lai B-Q, Wang J-M, Ling E-A, Wu J-L, Zeng Y-S (2014) Graft of a tissue-engineered neural scaffold serves as a promising strategy to restore myelination after rat spinal cord transection. Stem Cells Dev 23(8):910–921

    Article  CAS  PubMed  Google Scholar 

  21. Dasari VR (2014) Mesenchymal stem cells in the treatment of spinal cord injuries: a review. World J Stem Cells 6(2):120

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vroemen M, Aigner L, Winkler J, Weidner N (2003) Adult neural progenitor cell grafts survive after acute spinal cord injury and integrate along axonal pathways. Eur J Neurosci 18(4):743–751

    Article  PubMed  Google Scholar 

  23. Webber DJ, Bradbury EJ, McMahon SB, Minger SL (2007) Transplanted neural progenitor cells survive and differentiate but achieve limited functional recovery in the lesioned adult rat spinal cord. Regen Med 2(6):929–945

    Article  CAS  PubMed  Google Scholar 

  24. Liang W, Han Q, Jin W, Xiao Z, Huang J, Ni H, Chen B, Kong J, Wu J, Dai J (2010) The promotion of neurological recovery in the rat spinal cord crushed injury model by collagen-binding BDNF. Biomaterials 31(33):8634–8641

    Article  CAS  PubMed  Google Scholar 

  25. Li J, Lepski G (2013) Cell transplantation for spinal cord injury: a systematic review. Biomed Res Int 2013:786475

    PubMed  PubMed Central  Google Scholar 

  26. Gargett CE, Chan RWS, Schwab KE (2007) Endometrial stem cells. Curr Opin Obstet Gynecol 19(4):377–383

    Article  PubMed  Google Scholar 

  27. Dimitrov R, Timeva T, Kyurkchiev D, Stamenova M, Shterev A, Kostova P, Zlatkov V, Kehayov I, Kyurkchiev S (2008) Characterization of clonogenic stromal cells isolated from human endometrium. Reprod Camb Engl 135(4):551–558

    CAS  Google Scholar 

  28. Mobarakeh ZT, Ai J, Yazdani F, Sorkhabadi SMR, Ghanbari Z, Javidan AN, Mortazavi-Tabatabaei SA, Massumi M, Barough SE (2012) Human endometrial stem cells as a new source for programming to neural cells. Cell Biol Int Rep 19(1):7–14

    Article  Google Scholar 

  29. Meng X, Ichim TE, Zhong J, Rogers A, Yin Z, Jackson J, Wang H, Ge W, Bogin V, Chan KW, Thébaud B, Riordan NH (2007) Endometrial regenerative cells: a novel stem cell population. J Transl Med 5(1):57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wolff EF, Gao X-B, Yao KV, Andrews ZB, Du H, Elsworth JD, Taylor HS (2011) Endometrial stem cell transplantation restores dopamine production in a Parkinson’s disease model. J Cell Mol Med 15(4):747–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Esposito E, Cuzzocrea S (2011) Anti-TNF therapy in the injured spinal cord. Trends Pharmacol Sci 32(2):107–115

    Article  CAS  PubMed  Google Scholar 

  32. Mpofu S (2005) Anti-TNF- therapies: they are all the same (aren’t they?). Rheumatology 44(3):271–273

    Article  CAS  PubMed  Google Scholar 

  33. Kurt G, Ergün E, Cemil B, Börcek AÖ, Börcek P, Gülbahar Ö, Çeviker N (2009) Neuroprotective effects of infliximab in experimental spinal cord injury. Surg Neurol 71(3):332–336

    Article  PubMed  Google Scholar 

  34. Soeda S, Ochiai T, Paopong L, Tanaka H, Shoyama Y, Shimeno H (2001) Crocin suppresses tumor necrosis factor-alpha-induced cell death of neuronally differentiated PC-12 cells. Life Sci 69(24):2887–2898

    Article  CAS  PubMed  Google Scholar 

  35. Nam KN, Park Y-M, Jung H-J, Lee JY, Min BD, Park S-U, Jung W-S, Cho K-H, Park J-H, Kang I, Hong J-W, Lee EH (2010) Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur J Pharmacol 648(1–3):110–116

    Article  CAS  PubMed  Google Scholar 

  36. Deslauriers AM, Afkhami-Goli A, Paul AM, Bhat RK, Acharjee S, Ellestad KK, Noorbakhsh F, Michalak M, Power C (2011) Neuroinflammation and endoplasmic reticulum stress are coregulated by crocin to prevent demyelination and neurodegeneration. J Immunol 187(9):4788–4799

    Article  CAS  PubMed  Google Scholar 

  37. Tamaddonfard E, Farshid AA, Ahmadian E, Hamidhoseyni A (2013) Crocin enhanced functional recovery after sciatic nerve crush injury in rats. Iran J Basic Med Sci 16(1):83–90

    PubMed  PubMed Central  Google Scholar 

  38. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21

    Article  CAS  PubMed  Google Scholar 

  39. Matsuyama D, Watanabe M, Suyama K, Kuroiwa M, Mochida J (2014) Endoplasmic reticulum stress response in the rat contusive spinal cord injury model-susceptibility in specific cell types. Spinal Cord 52(1):9–16

    Article  CAS  PubMed  Google Scholar 

  40. Karimi-Abdolrezaee S (2006) Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci 26(13):3377–3389

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shideh Montasser Kouhsari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terraf, P., Kouhsari, S.M., Ai, J. et al. Tissue-Engineered Regeneration of Hemisected Spinal Cord Using Human Endometrial Stem Cells, Poly ε-Caprolactone Scaffolds, and Crocin as a Neuroprotective Agent. Mol Neurobiol 54, 5657–5667 (2017). https://doi.org/10.1007/s12035-016-0089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0089-7

Keywords

Navigation