Skip to main content

Advertisement

Log in

Current status of cell-mediated regenerative therapies for human spinal cord injury

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

During the past decade, significant advances have been made in refinements for regenerative therapies following human spinal cord injury (SCI). Positive results have been achieved with different types of cells in various clinical studies of SCI. In this review, we summarize recently-completed clinical trials using cell-mediated regenerative therapies for human SCI, together with ongoing trials using neural stem cells. Specifically, clinical studies published in Chinese journals are included. These studies show that current transplantation therapies are relatively safe, and have provided varying degrees of neurological recovery. However, many obstacles exist, hindering the introduction of a specific clinical therapy, including complications and their causes, selection of the target population, and optimization of transplantation material. Despite these and other challenges, with the collaboration of research groups and strong support from various organizations, cell-mediated regenerative therapies will open new perspectives for SCI treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord 2006, 44: 523–529.

    Article  CAS  PubMed  Google Scholar 

  2. Ronaghi M, Erceg S, Moreno-Manzano V, Stojkovic M. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells 2010, 28: 93–99.

    PubMed  Google Scholar 

  3. Yuan YM, He C. The glial scar in spinal cord injury and repair. Neurosci Bull 2013, 29: 421–435.

    Article  PubMed  Google Scholar 

  4. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8: 315–317.

    Article  CAS  PubMed  Google Scholar 

  5. Kim HJ, Lee JH, Kim SH. Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis. J Neurotrauma 2010, 27: 131–138.

    Article  PubMed  Google Scholar 

  6. Sasaki M, Radtke C, Tan AM, Zhao P, Hamada H, Houkin K, et al. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci 2009, 29: 14932–14941.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, Hill CE, Sparling JS, Plemel JR, et al. A systematic review of cellular transplantation therapies for spinal cord injury. J Neurotrauma 2011, 28: 1611–1682.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Uccelli A, Benvenuto F, Laroni A, Giunti D. Neuroprotective features of mesenchymal stem cells. Best Pract Res Clin Haematol 2011, 24: 59–64.

    Article  CAS  PubMed  Google Scholar 

  9. Levy YS, Bahat-Stroomza M, Barzilay R, Burshtein A, Bulvik S, Barhum Y, et al. Regenerative effect of neuralinduced human mesenchymal stromal cells in rat models of Parkinson’s disease. Cytotherapy 2008, 10: 340–352.

    Article  CAS  PubMed  Google Scholar 

  10. Jiang J, Lv Z, Gu Y, Li J, Xu L, Xu W, et al. Adult rat mesenchymal stem cells differentiate into neuronallike phenotype and express a variety of neuro-regulatory molecules in vitro. Neurosci Res 2010, 66: 46–52.

    Article  CAS  PubMed  Google Scholar 

  11. Barnabe GF, Schwindt TT, Calcagnotto ME, Motta FL, Martinez G, Jr., de Oliveira AC, et al. Chemically-induced RAT mesenchymal stem cells adopt molecular properties of neuronal-like cells but do not have basic neuronal functional properties. PLoS One 2009, 4: e5222.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Park HC, Shim YS, Ha Y, Yoon SH, Park SR, Choi BH, et al. Treatment of complete spinal cord injury patients by autologous bone marrow cell transplantation and administration of granulocyte-macrophage colony stimulating factor. Tissue Eng 2005, 11: 913–922.

    Article  CAS  PubMed  Google Scholar 

  13. Callera F, do Nascimento RX. Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study. Exp Hematol 2006, 34: 130–131.

    Article  PubMed  Google Scholar 

  14. Sykova E, Homola A, Mazanec R, Lachmann H, Konradova SL, Kobylka P, et al. Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant 2006, 15: 675–687.

    Article  PubMed  Google Scholar 

  15. Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, Kim MO, et al. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells 2007, 25: 2066–2073.

    Article  PubMed  Google Scholar 

  16. Deda H, Inci MC, Kurekci AE, Kayihan K, Ozgun E, Ustunsoy GE, et al. Treatment of chronic spinal cord injured patients with autologous bone marrow-derived hematopoietic stem cell transplantation: 1-year follow-up. Cytotherapy 2008, 10: 565–574.

    Article  CAS  PubMed  Google Scholar 

  17. Geffner LF, Santacruz P, Izurieta M, Flor L, Maldonado B, Auad AH, et al. Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant 2008, 17: 1277–1293.

    Article  CAS  PubMed  Google Scholar 

  18. Moviglia GA, Varela G, Brizuela JA, Moviglia Brandolino MT, Farina P, Etchegaray G, et al. Case report on the clinical results of a combined cellular therapy for chronic spinal cord injured patients. Spinal Cord 2009, 47: 499–503.

    Article  CAS  PubMed  Google Scholar 

  19. Kumar AA, Kumar SR, Narayanan R, Arul K, Baskaran M. Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: A phase I/II clinical safety and primary efficacy data. Exp Clin Transplant 2009, 7: 241–248.

    PubMed  Google Scholar 

  20. Cristante AF, Barros-Filho TE, Tatsui N, Mendrone A, Caldas JG, Camargo A, et al. Stem cells in the treatment of chronic spinal cord injury: evaluation of somatosensitive evoked potentials in 39 patients. Spinal Cord 2009, 47: 733–738.

    Article  CAS  PubMed  Google Scholar 

  21. Kishk NA, Gabr H, Hamdy S, Afifi L, Abokresha N, Mahmoud H, et al. Case control series of intrathecal autologous bone marrow mesenchymal stem cell therapy for chronic spinal cord injury. Neurorehabil Neural Repair 2010, 24: 702–708.

    Article  PubMed  Google Scholar 

  22. Karamouzian S, Nematollahi-Mahani SN, Nakhaee N, Eskandary H. Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients. Clin Neurol Neurosurg 2012, 114: 935–939.

    Article  PubMed  Google Scholar 

  23. Samdani AF, Paul C, Betz RR, Fischer I, Neuhuber B. Transplantation of human marrow stromal cells and mononuclear bone marrow cells into the injured spinal cord: a comparative study. Spine (Phila Pa 1976) 2009, 34: 2605–2612.

    Article  Google Scholar 

  24. Koda M, Nishio Y, Kamada T, Someya Y, Okawa A, Mori C, et al. Granulocyte colony-stimulating factor (G-CSF) mobilizes bone marrow-derived cells into injured spinal cord and promotes functional recovery after compression-induced spinal cord injury in mice. Brain Res 2007, 1149: 223–231.

    Article  CAS  PubMed  Google Scholar 

  25. Pal R, Venkataramana NK, Bansal A, Balaraju S, Jan M, Chandra R, et al. Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 2009, 11: 897–911.

    Article  CAS  PubMed  Google Scholar 

  26. Sen A, Lea-Currie YR, Sujkowska D, Franklin DM, Wilkison WO, Halvorsen YD, et al. Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous. J Cell Biochem 2001, 81: 312–319.

    Article  CAS  PubMed  Google Scholar 

  27. Ra JC, Shin IS, Kim SH, Kang SK, Kang BC, Lee HY, et al. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev 2011, 20: 1297–1308.

    Article  CAS  PubMed  Google Scholar 

  28. Troyer DL, Weiss ML. Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 2008, 26: 591–599.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Weiss ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, VanderWerff I, et al. Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 2008, 26: 2865–2874.

    Article  CAS  PubMed  Google Scholar 

  30. Liu J, Han D, Wang Z, Xue M, Zhu L, Yan H, et al. Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells. Cytotherapy 2013, 15: 185–191.

    Article  PubMed  Google Scholar 

  31. Mehrholz J, Kugler J, Pohl M. Locomotor training for walking after spinal cord injury. Spine (Phila Pa 1976) 2008, 33: E768–777.

    Article  Google Scholar 

  32. Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 2005, 25: 4694–4705.

    Article  CAS  PubMed  Google Scholar 

  33. Sharp J, Frame J, Siegenthaler M, Nistor G, Keirstead HS. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants improve recovery after cervical spinal cord injury. Stem Cells 2010, 28: 152–163.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Hooshmand MJ, Sontag CJ, Uchida N, Tamaki S, Anderson AJ, Cummings BJ. Analysis of host-mediated repair mechanisms after human CNS-stem cell transplantation for spinal cord injury: correlation of engraftment with recovery. PLoS One 2009, 4: e5871.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Salazar DL, Uchida N, Hamers FP, Cummings BJ, Anderson AJ. Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. PLoS One 2010, 5: e12272.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Xu L, Ryugo DK, Pongstaporn T, Johe K, Koliatsos VE. Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: differentiation and structural integration into the segmental motor circuitry. J Comp Neurol 2009, 514: 297–309.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Boulis NM, Federici T, Glass JD, Lunn JS, Sakowski SA, Feldman EL. Translational stem cell therapy for amyotrophic lateral sclerosis. Nat Rev Neurol 2011, 8: 172–176.

    Article  PubMed  Google Scholar 

  38. Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 2012, 150: 1264–1273.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Riley J, Federici T, Polak M, Kelly C, Glass J, Raore B, et al. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I safety trial, technical note, and lumbar safety outcomes. Neurosurgery 2012, 71: 405–416; discussion 416.

    Article  PubMed  Google Scholar 

  40. Duncan ID, Aguayo AJ, Bunge RP, Wood PM. Transplantation of rat Schwann cells grown in tissue culture into the mouse spinal cord. J Neurol Sci 1981, 49: 241–252.

    Article  CAS  PubMed  Google Scholar 

  41. Bunge MB, Wood PM. Realizing the maximum potential of Schwann cells to promote recovery from spinal cord injury. Handb Clin Neurol 2012, 109: 523–540.

    Article  PubMed  Google Scholar 

  42. Saberi H, Firouzi M, Habibi Z, Moshayedi P, Aghayan HR, Arjmand B, et al. Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J Neurosurg Spine 2011, 15: 515–525.

    Article  PubMed  Google Scholar 

  43. Mackay-Sim A, Feron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain 2008, 131: 2376–2386.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Lima C, Escada P, Pratas-Vital J, Branco C, Arcangeli CA, Lazzeri G, et al. Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil Neural Repair 2010, 24: 10–22.

    Article  PubMed  Google Scholar 

  45. Huang H, Chen L, Xi H, Wang Q, Zhang J, Liu Y, et al. Olfactory ensheathing cells transplantation for central nervous system diseases in 1,255 patients. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2009, 23: 14–20.

    CAS  PubMed  Google Scholar 

  46. Knoller N, Auerbach G, Fulga V, Zelig G, Attias J, Bakimer R, et al. Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. J Neurosurg Spine 2005, 3: 173–181.

    Article  PubMed  Google Scholar 

  47. Cheng H, Zhang Z, Li M. CT guided bone marrowl stem cells transplantation therapy for adult spinal cord injury. The 3rd Beijing International Forum on Rehabilitation 2008.

    Google Scholar 

  48. Zhao T, Lu Z, Zhao L. Preliminary observation of stem cells and olfactory ensheathing cells graft for treatment of spinal cord injury. Orthopedic J Chin 2006, 14: 3.

    Google Scholar 

  49. Dai X, Feng M, Lu A. Treatment effect of mesenchymal stem cell transplantation on spinal cord injury:23-case curative effect analysis. Chin J Rehabil Med 2012, 27: 5.

    Google Scholar 

  50. Wang Y, Wang L, Yin Z. Autologous bone marrow stem cell transplantation for spinal cord injury ln 420 cases. J Clin Rehabil Tissue Eng Res 2009, 13: 4.

    Google Scholar 

  51. Fang M, Wang M, Wang Y. Clinical study of autologous bonemarrow mesenchymal stem cell transplantation for spinal cord injury. J Qiqihar Univ Med 2011, 32: 3.

    Google Scholar 

  52. Li Z, Bu X, Zhang S, Liang Q, Li T, Chen S, et al. Autologous bone marrow mesenchymal stem cells in combination with peripheral nerve transplantation for treating spinal cord injury. J Clin Rehabil Tissue Eng Res 2008, 12: 3041–3044.

    Google Scholar 

  53. Cui G, Li Y, Gao H. Autologous Mesenchymal StemCell Transplantation in Patients with Diseases of Nervous System. Chin J Rehabil Theory Pract 2006, 12: 4.

    Google Scholar 

  54. Bu X, Zhao H, Qian B. Treatment of injured spinal cord by mesenchymal stem cells transplantation in combination with neurotrophic factors and comprehensive rehabilitation. J Chin Pract Diagnosis Therapy 2009, 23: 3.

    Google Scholar 

  55. Yang H, Zhang R, Du L. Clinical Study of Umbilical Cord Mesenchymal Stem Cell Transplantation Therapy for Spinal Cord Injury. Prog Biomed 2012, 12: 5.

    Google Scholar 

  56. Liu J, Han D, Wang Z. Clinical analysis of umbilical cord mesenchymal stem cells in treatment of spinal cord injury. Chin J Inj Repair Wound Heal 2011, 6: 8.

    Google Scholar 

  57. Guo G, Shen L, Li Z. Clinical study of umbilical cord blood mesenchymal stem cell for spinal cord injury. Chinese J Pract Med 2012, 39: 3.

    Google Scholar 

  58. Zhang Z, Dai G, Wang X. Observation on Clinical Effect of Neural Stem Cells Transplantation on Spinal cord Injury. J Med Forum 2010, 31: 4.

    Google Scholar 

  59. Zheng Z, Wei K, Liu F. Clinical verification of olfactory ensheathing cell transplantation in treatment of spinal cord injury. J Clin Rehabil Tissue Eng Res 2010, 14: 4.

    Google Scholar 

  60. Cui G, Song C, Li Y. Clinical study of autologous marrow mononuclear cells transplantation in patients with spinal cord injury. Chin J Rehabil Med 2009, 24.

  61. Zhu H, Feng Y, You S. Schwann cell transplantation for the treatment of chronic spinal cord injury. Chin J Neurosurg Dis Res 2007, 6: 4.

    Google Scholar 

  62. Chernykh ER, Stupak VV, Muradov GM, Sizikov MY, Shevela EY, Leplina OY, et al. Application of autologous bone marrow stem cells in the therapy of spinal cord injury patients. Bull Exp Biol Med 2007, 143: 543–547.

    Article  CAS  PubMed  Google Scholar 

  63. Mehta T, Feroz A, Thakkar U, Vanikar A, Shah V, Trivedi H. Subarachnoid placement of stem cells in neurological disorders. Transplant Proc 2008, 40: 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  64. Brown A, Weaver LC. The dark side of neuroplasticity. Exp Neurol 2012, 235: 133–141.

    Article  PubMed  Google Scholar 

  65. Campbell PG, Yadla S, Malone J, Maltenfort MG, Harrop JS, Sharan AD, et al. Complications related to instrumentation in spine surgery: a prospective analysis. Neurosurg Focus 2011, 31: E10.

    Article  PubMed  Google Scholar 

  66. Lebude B, Yadla S, Albert T, Anderson DG, Harrop JS, Hilibrand A, et al. Defining “complications” in spine surgery: neurosurgery and orthopedic spine surgeons’ survey. J Spinal Disord Tech 2010, 23: 493–500.

    Article  PubMed  Google Scholar 

  67. Nasser R, Yadla S, Maltenfort MG, Harrop JS, Anderson DG, Vaccaro AR, et al. Complications in spine surgery. J Neurosurg Spine 2010, 13: 144–157.

    Article  PubMed  Google Scholar 

  68. Yadla S, Malone J, Campbell PG, Maltenfort MG, Sharan AD, Harrop JS, et al. Preoperative diagnosis and early complications in thoracolumbar spine surgery: a single center prospective study. J Spinal Disord Tech 2011, 24: E16–20.

    Article  PubMed  Google Scholar 

  69. Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D, et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 2007, 45: 190–205.

    Article  CAS  PubMed  Google Scholar 

  70. Lammertse D, Tuszynski MH, Steeves JD, Curt A, Fawcett JW, Rask C, et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: clinical trial design. Spinal Cord 2007, 45: 232–242.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Steeves JD, Lammertse D, Curt A, Fawcett JW, Tuszynski MH, Ditunno JF, et al. Guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: clinical trial outcome measures. Spinal Cord 2007, 45: 206–221.

    Article  CAS  PubMed  Google Scholar 

  72. Tuszynski MH, Steeves JD, Fawcett JW, Lammertse D, Kalichman M, Rask C, et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP Panel: clinical trial inclusion/exclusion criteria and ethics. Spinal Cord 2007, 45: 222–231.

    Article  CAS  PubMed  Google Scholar 

  73. Steeves JD, Kramer JK, Fawcett JW, Cragg J, Lammertse DP, Blight AR, et al. Extent of spontaneous motor recovery after traumatic cervical sensorimotor complete spinal cord injury. Spinal Cord 2011, 49: 257–265.

    Article  CAS  PubMed  Google Scholar 

  74. Emanuel EJ, Wendler D, Grady C. What makes clinical research ethical? JAMA 2000, 283: 2701–2711.

    Article  CAS  PubMed  Google Scholar 

  75. Kimmelman J, London AJ. Predicting harms and benefits in translational trials: ethics, evidence, and uncertainty. PLoS Med 2011, 8: e1001010.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Chien KR. Stem cells: lost in translation. Nature 2004, 428: 607–608.

    Article  CAS  PubMed  Google Scholar 

  77. Hyun I, Lindvall O, Ahrlund-Richter L, Cattaneo E, Cavazzana-Calvo M, Cossu G, et al. New ISSCR guidelines underscore major principles for responsible translational stem cell research. Cell Stem Cell 2008, 3: 607–609.

    Article  CAS  PubMed  Google Scholar 

  78. Kwon BK, Hillyer J, Tetzlaff W. Translational research in spinal cord injury: a survey of opinion from the SCI community. J Neurotrauma 2010, 27: 21–33.

    Article  PubMed  Google Scholar 

  79. Lee DH, Lee JK. Animal models of axon regeneration after spinal cord injury. Neurosci Bull 2013, 29: 436–444.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Fehlings MG, Vawda R. Cellular treatments for spinal cord injury: the time is right for clinical trials. Neurotherapeutics 2011, 8: 704–720.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Mathews DJ, Sugarman J, Bok H, Blass DM, Coyle JT, Duggan P, et al. Cell-based interventions for neurologic conditions: ethical challenges for early human trials. Neurology 2008, 71: 288–293.

    Article  CAS  PubMed  Google Scholar 

  82. Sandner B, Prang P, Rivera FJ, Aigner L, Blesch A, Weidner N. Neural stem cells for spinal cord repair. Cell Tissue Res 2012, 349: 349–362.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhong Zhu.

Additional information

These authors contributed equally to this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Tang, Q., Gao, H. et al. Current status of cell-mediated regenerative therapies for human spinal cord injury. Neurosci. Bull. 30, 671–682 (2014). https://doi.org/10.1007/s12264-013-1438-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1438-4

Keywords

Navigation