Skip to main content

Advertisement

Log in

Zinc Signaling in the Hippocampus and Its Relation to Pathogenesis of Depression

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Zinc is released from glutamatergic (zincergic) neuron terminals in the brain, followed by the increase in Zn2+ concentration in the intracellular (cytosol) compartment as well as that in the extracellular compartment. Intracellular Zn2+ concentration mainly increases through calcium-permeable channels and serves as Zn2+ signal as well as extracellular Zn2+ concentration. Hippocampal Zn2+ signaling may participate in synaptic plasticity such as long-term potentiation and cognitive function. On the other hand, subclinical zinc deficiency is common in the old who might be more susceptible to depression. Zinc deficiency causes abnormal glucocorticoid secretion and increases depression-like behavior in animals. Neuropsychological symptoms are observed prior to the decrease in Zn2+ signal in the hippocampus under zinc deficiency. This paper summarizes that hippocampal Zn2+ signaling serves to maintain healthy brain and that glucocorticoid signaling, which is responsive to zinc homeostasis in the living body, is linked to the pathophysiology of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    PubMed  CAS  Google Scholar 

  2. Prasad AS (2008) Zinc in human health: effect of zinc on immune cells. Mol Med 14:353–357

    PubMed  CAS  Google Scholar 

  3. Brown KH, Wuehler SE, Peerson JM (2001) The importance of zinc in human nutrition and estimation of the blobal prevalence of zinc deficiency. Food Nutr Bull 22:113–125

    Google Scholar 

  4. King JC, Shames DM, Woodhouse LR (2000) Zinc homeostasis in humans. J Nutr 130:1360S–1366S

    PubMed  CAS  Google Scholar 

  5. Vallee BL, Falchuk KH (1993) The biological basis of zinc physiology. Physiol Rev 73:79–118

    PubMed  CAS  Google Scholar 

  6. Sandstead HH, Frederickson CJ, Penland JG (2000) History of zinc as related to brain function. J Nutr 130:496S–502S

    PubMed  CAS  Google Scholar 

  7. Burdette SC, Lippard SJ (2003) Meeting of the minds: metalloneurochemistry. Proc Natl Acad Sci USA 100:3605–3610

    PubMed  CAS  Google Scholar 

  8. Markesbery WR, Ehmann WD, Alauddin M, Hossain TIM (1984) Brain trace element concentrations in aging. Neurobiol Aging 5:19–28

    PubMed  CAS  Google Scholar 

  9. Weiss JH, Sensi SL, Koh JY (2000) Zn(2+): a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci 21:395–401

    PubMed  CAS  Google Scholar 

  10. Hershey CO, Hershey LA, Varnes A, Vibhakar SD, Lavin P, Strain WH (1983) Cerebrospinal fluid trace element content in dementia: clinical, radiologic, and pathologic correlations. Neurology 33:1350–1353

    PubMed  CAS  Google Scholar 

  11. Takeda A, Akiyama T, Sawashita J, Okada S (1994) Brain uptake of trace metals, zinc and manganese, in rats. Brain Res 640:341–344

    PubMed  CAS  Google Scholar 

  12. Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Rev 34:137–148

    PubMed  CAS  Google Scholar 

  13. Takeda A (2001) Zinc homeostasis and functions of zinc in the brain. Biometals 14:343–352

    PubMed  CAS  Google Scholar 

  14. Takeda A, Sawashita J, Okada S (1995) Biological half-lives of zinc and manganese in rat brain. Brain Res 695:53–58

    PubMed  CAS  Google Scholar 

  15. Capasso M, Jeng JM, Malavolta M, Mocchegiani E, Sensi SL (2005) Zinc dyshomeostasis: a key modulator of neuronal injury. J Alzheimers Dis 8:93–108

    PubMed  CAS  Google Scholar 

  16. Mocchegiani E, Bertoni-Freddari C, Marcellini F, Malavolta M (2005) Brain, aging and neurodegeneration: role of zinc ion availability. Prog Neurobiol 75:367–390

    PubMed  CAS  Google Scholar 

  17. Frazzini V, Rockabrand E, Mocchegiani E, Sensi SL (2006) Oxidative stress and brain aging: is zinc the link? Biogerontology 7:307–314

    PubMed  CAS  Google Scholar 

  18. Bressler JP, Olivi L, Cheong JH, Kim Y, Maerten A, Bannon D (2007) Metal transporters in intestine and brain: their involvement in metal-associated neurotoxicities. Hum Exp Toxicol 26:221–229

    PubMed  CAS  Google Scholar 

  19. Frederickson CJ (1989) Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31:145–238

    PubMed  CAS  Google Scholar 

  20. Frederickson CJ, Bush AI (2001) Synaptically released zinc: physiological functions and pathological effects. Biometals 14:353–366

    PubMed  CAS  Google Scholar 

  21. Frederickson CJ, Moncrieff DW (1994) Zinc-containing neurons. Biol Signals 3:127–139

    PubMed  CAS  Google Scholar 

  22. Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD (1999) Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci USA 96(4):1716–1721

    PubMed  CAS  Google Scholar 

  23. Valente T, Auladell C (2002) Developmental expression of ZnT3 in mouse brain: correlation between the vesicular zinc transporter protein and chelatable vesicular zinc (CVZ) cells. Glial and neuronal CVZ cells interact. Mol Cell Neurosci 21:189–204

    PubMed  CAS  Google Scholar 

  24. Valente T, Auladell C, Pérez-Clausell J (2002) Postnatal development of zinc-rich terminal fields in the brain of the rat. Exp Neurol 174:215–229

    PubMed  CAS  Google Scholar 

  25. Frederickson CJ, Giblin LJ, Krezel A, McAdoo DJ, Muelle RN, Zeng Y, Balaji RV, Masalha R, Thompson RB, Fierke CA, Sarvey JM, Valdenebro M, Prough DS, Zornow MH (2006) Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp Neurol 198:285–293

    PubMed  CAS  Google Scholar 

  26. Sensi SL, Canzoniero LMT, Yu SP, Ying HS, Koh JY, Kerchner GA, Choi DW (1997) Measurement of intracellular free zinc in living cortical neurons: routes of entry. J Neurosci 15:9554–9564

    Google Scholar 

  27. Minami A, Sakurada N, Fuke S, Kikuchi K, Nagano T, Oku N, Takeda A (2006) Inhibition of presynaptic activity by zinc released from mossy fiber terminals during tetanic stimulation. J Neurosci Res 83:167–176

    PubMed  CAS  Google Scholar 

  28. Sensi SL, Ton-That D, Sullivan PG, Jonas EA, Gee KR, Kaczmarek LK, Weiss JH (2003) Modulation of mitochondrial function by endogenous Zn2+ pools. Proc Natl Acad Sci USA 100:6157–6162

    PubMed  CAS  Google Scholar 

  29. Maret W (2006) Zinc coordination environments in proteins as redox sensors and signal transducers. Antioxid Redox Signal 8:1419–1441

    PubMed  CAS  Google Scholar 

  30. Krezel A, Hao Q, Maret W (2007) The zinc/thiolate redox biochemistry of metallothionein and the control of zinc ion fluctuations in cell signaling. Arch Biochem Biophys 463:188–200

    PubMed  CAS  Google Scholar 

  31. Bird CM, Burgess N (2008) The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci 9:182–194

    PubMed  CAS  Google Scholar 

  32. Frederickson CJ, Danscher G (1990) Zinc-containing neurons in hippocampus and related CNS structures. Prog Brain Res 83:71–84

    PubMed  CAS  Google Scholar 

  33. Smart TG, Xie X, Krishek BJ (1994) Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog Neurobiol 42:393–441

    PubMed  CAS  Google Scholar 

  34. Takeda A, Tamano H (2009) Insight into zinc signaling from dietary zinc deficiency. Brain Res Rev 62:33–34

    PubMed  CAS  Google Scholar 

  35. Nakashima AS, Dyck RH (2009) Zinc and cortical plasticity. Brain Res Rev 59:347–373

    PubMed  CAS  Google Scholar 

  36. Takeda A, Tamano H (2010) Zinc signaling through glucocorticoid and glutamate signaling in stressful circumstances. J Neurosci Res 88:3002–3010

    PubMed  CAS  Google Scholar 

  37. Idei M, Miyake K, Horiuchi Y, Tabe Y, Miyake N, Ikeda N, Miida T (2010) Serum zinc concentration decreases with age and is associated with anemia in middle-aged and elderly people. Rinsho Byori 58:205–210

    PubMed  CAS  Google Scholar 

  38. Blazer DG 2nd, Hybels CF (2005) Origins of depression in later life. Psychol Med 35:1241–1252

    PubMed  Google Scholar 

  39. Nakatani N, Aburatani H, Nishimura K, Semba J, Yoshikawa T (2004) Comprehensive expression analysis of a rat depression model. Pharmacogenomics J 4:114–126

    PubMed  CAS  Google Scholar 

  40. Shelton RC, Claiborne J, Sidoryk-Wegrzynowicz M, Reddy R, Aschner M, Lewis DA, Mirnics K (2010) Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol Psychiatry (in press).

  41. Sowa-Kućma M, Kowalska M, Szlósarczyk M, Gołembiowska K, Opoka W, Baś B, Pilc A, Nowak G (2010) Chronic treatment with zinc and antidepressants induces enhancement of presynaptic/extracellular zinc concentration in the rat prefrontal cortex. Amino Acids (in press).

  42. Takeda A, Minami A, Seki Y, Oku N (2003) Inhibitory function of zinc against excitation of hippocampal glutamatergic neurons. Epilepsy Res 57:169–174

    PubMed  CAS  Google Scholar 

  43. Takeda A, Minami A, Seki Y, Oku N (2004) Differential effects of zinc on glutamatergic and GABAergic neurotransmitter systems in the hippocampus. J Neurosci Res 75:225–229

    PubMed  CAS  Google Scholar 

  44. Cohen-Kfir E, Lee W, Eskandari S, Nelson N (2005) Zinc inhibition of gamma-aminobutyric acid transporter 4 (GAT4) reveals a link between excitatory and inhibitory neurotransmission. Proc Natl Acad Sci USA 102:6154–6159

    PubMed  CAS  Google Scholar 

  45. Takeda A, Fuke S, Minami A, Oku N (2007) Role of zinc influx via AMPA/kainate receptor activation in metabotropic glutamate receptor-mediated calcium release. J Neurosci Res 85:1310–1317

    PubMed  CAS  Google Scholar 

  46. Jia Y, Jeng JM, Sensi S, Weiss JH (2002) Zn2+ currents are mediated by calcium-permeable AMPA/kainite channels in cultured murine hippocampal neurons. J Physiol Lond 543:35–48

    PubMed  CAS  Google Scholar 

  47. Takeda A, Fuke S, Tsutsumi W, Oku N (2007) Negative modulation of presynaptic activity by zinc released from Schaffer collaterals. J Neurosci Res 85:3666–3672

    PubMed  CAS  Google Scholar 

  48. Ando M, Oku N, Takeda A (2010) Zinc-mediated attenuation of hippocampal mossy fiber long-term potentiation induced by forskolin. Neurochem Int 57:608–614

    PubMed  CAS  Google Scholar 

  49. Quinta-Ferreira ME, Matias CM (2004) Hippocampal mossy fiber calcium transients are maintained during long-term potentiation and are inhibited by endogenous zinc. Brain Res 1004:52–60

    PubMed  CAS  Google Scholar 

  50. Quinta-Ferreira ME, Matias CM (2005) Tetanically released zinc inhibits hippocampal mossy fiber calcium, zinc and synaptic responses. Brain Res 1047:1–9

    PubMed  CAS  Google Scholar 

  51. Bancila V, Nikonenko I, Dunant Y, Bloc A (2004) Zinc inhibits glutamate release via activation of pre-synaptic KATP channels and reduces ischaemic damage in rat hippocampus. J Neurochem 90:1243–1250

    PubMed  CAS  Google Scholar 

  52. Kapur A, Yeckel MF, Grey R, Johnston D (1998) L-type calcium channels are required for one form of hippocampal mossy fiber LTP. J Neurophysiol 79:2181–2190

    PubMed  CAS  Google Scholar 

  53. Neves G, Cooke SF, Bliss TV (2008) Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9:65–75

    PubMed  CAS  Google Scholar 

  54. Daumas S, Halley H, Lassalle JM (2004) Disruption of hippocampal CA3 network: effects on episodic-like memory processing in C57BL/6J mice. Eur J Neurosci 20:597–600

    PubMed  Google Scholar 

  55. Ueno S, Tsukamoto M, Hirano T, Kikuchi K, Yamada MK, Nishiyama N, Nagano T, Matsuki N, Ikegaya Y (2002) Mossy fiber Zn2+ spillover modulates heterosynaptic N-methyl-d-aspartate receptor activity in hippocampal CA3 circuits. J Cell Biol 158:215–220

    PubMed  CAS  Google Scholar 

  56. Vogt K, Mellor J, Tong G, Nicoll R (2000) The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 26:187–196

    PubMed  CAS  Google Scholar 

  57. Takeda A, Kanno S, Sakurada N, Ando M, Oku N (2008) Attenuation of hippocampal mossy fiber long-term potentiation by low micromolar concentrations of zinc. J Neurosci Res 86:2909–2911

    Google Scholar 

  58. Klein C, Sunahara RK, Hudson TY, Heyduk T, Howlett AC (2002) Zinc inhibition of cAMP signaling. J Biol Chem 277:11859–11865

    PubMed  CAS  Google Scholar 

  59. Izumi Y, Auberson YP, Zorumski CF (2006) Zinc modulates bidirectional hippocampal plasticity by effects on NMDA receptors. J Neurosci 26:7181–7188

    PubMed  CAS  Google Scholar 

  60. Takeda A, Fuke S, Ando M, Oku N (2009) Positive modulation of long-term potentiation at hippocampal CA1 synapses by low micromolar concentrations of zinc. Neuroscience 158:585–591

    PubMed  CAS  Google Scholar 

  61. Takeda A, Iwaki H, Ando M, Itagaki K, Suzuki M, Oku N (2010) Zinc differentially acts on components of long-term potentiation at hippocampal CA1 synapse. Brain Res 1323:59–64

    PubMed  CAS  Google Scholar 

  62. Zola-Morgan SM, Squire LR (1990) The primate hippocampal formation: evidence for a time-limited role in memory storage. Science 250:288–290

    PubMed  CAS  Google Scholar 

  63. Lavenex P, Amaral DG (2000) Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus 10:420–430

    PubMed  CAS  Google Scholar 

  64. de Curtis M, Paré D (2004) The rhinal cortices: a wall of inhibition between the neocortex and the hippocampus. Prog Neurobiol 74:101–110

    PubMed  Google Scholar 

  65. Howland JG, Wang YT (2008) Synaptic plasticity in learning and memory: stress effects in the hippocampus. Prog Brain Res 169:145–158

    PubMed  CAS  Google Scholar 

  66. Takeda A, Takada S, Ando M, Itagaki K, Tamano H, Suzuki M, Iwaki H, Oku N (2010) Impairment of recognition memory and hippocampal long-term potentiation after acute exposure to clioquinol. Neuroscience 171:443–450

    PubMed  CAS  Google Scholar 

  67. Lauri SE, Bortolotto ZA, Nistico R, Bleakman D, Ornstein PL, Lodge D, Isaac JTR, Collingridge GL (2003) A role for Ca2+ stores in kainate receptor-dependent synaptic facilitation and LTP at mossy fiber synapses in the hippocampus. Neuron 39:327–341

    PubMed  CAS  Google Scholar 

  68. Rodriguez-Moreno A, Sihra TS (2004) Presynaptic kainate receptor facilitation of glutmate release involves protein kinase A in the rat hippocampus. J Physiol 557:733–745

    PubMed  CAS  Google Scholar 

  69. Koizumi S, Fujishita K, Inoue K (2005) Regulation of cell-to-cell communication mediated by astrocytic ATP in the CNS. Purinergic Signal 1:211–217

    PubMed  CAS  Google Scholar 

  70. Domingues AM, Taylor M, Fern R (2010) Glia as transmitter sources and sensors in health and disease. Neurochem Int 57:359–366

    PubMed  CAS  Google Scholar 

  71. Suh SW, Aoyama K, Alano CC, Anderson CM, Hamby AM, Swanson RA (2007) Zinc inhibits astrocyte glutamate uptake by activation of poly(ADP-ribose) polymerase-1. Mol Med 13:344–349

    PubMed  CAS  Google Scholar 

  72. Takeda A, Minami A, Sakurada N, Nakajima S, Oku N (2007) Response of hippocampal mossy fiber zinc to excessive glutamate release. Neurochem Int 50:322–327

    PubMed  CAS  Google Scholar 

  73. Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016

    PubMed  CAS  Google Scholar 

  74. Choi DW, Koh JY (1998) Zinc and brain injury. Annu Rev Neurosci 21:347–375

    PubMed  CAS  Google Scholar 

  75. Lee JM, Zipfel GJ, Choi DW (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399:A7–A14

    PubMed  CAS  Google Scholar 

  76. Sensi SL, Jeng JM (2004) Rethinking the excitotoxic ionic milieu: the emerging role of Zn(2+) in ischemic neuronal injury. Curr Mol Med 4:87–111

    PubMed  CAS  Google Scholar 

  77. Noh KM, Yokota H, Mashiko T, Castillo PE, Zukin RS, Bennett MV (2005) Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc Natl Acad Sci USA 102:12230–12235

    PubMed  CAS  Google Scholar 

  78. Suh SW, Gum ET, Hamby AM, Chan PH, Swanson RA (2007) Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest 117:910–918

    PubMed  CAS  Google Scholar 

  79. Côté A, Chiasson M, Peralta MR 3rd, Lafortune K, Pellegrini L, Tóth K (2005) Cell type-specific action of seizure-induced intracellular zinc accumulation in the rat hippocampus. J Physiol 566:821–837

    PubMed  Google Scholar 

  80. Lavoie N, Peralta MR 3rd, Chiasson M, Lafortune K, Pellegrini L, Seress L, Tóth K (2007) Extracellular chelation of zinc does not affect hippocampal excitability and seizure-induced cell death in rats. J Physiol 578:275–289

    PubMed  CAS  Google Scholar 

  81. Takeda A, Itoh H, Tamano H, Oku N (2009) High K+-induced increase in extracellular glutamate in zinc deficiency and endogenous zinc action. J Health Sci 55:405–412

    CAS  Google Scholar 

  82. Lee AL, Ogle WO, Sapolsky RM (2002) Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord 4:117–128

    PubMed  CAS  Google Scholar 

  83. Kim JJ, Yoon KS (1998) Stress: metaplastic effects in the hippocampus. Trends Neurosci 21:505–509

    PubMed  CAS  Google Scholar 

  84. McEwen BS (1999) Stress and hippocampal plasticity. Ann Rev Neurosci 22:105–122

    PubMed  CAS  Google Scholar 

  85. Garcia R (2001) Stress, hippocampal plastivity, and spatial learning. Synapse 40:180–183

    PubMed  CAS  Google Scholar 

  86. Kim JJ, Song EY, Kosten TA (2006) Stress effects in the hippocampus: synaptic plasticity and memory. Stress 9:1–11

    PubMed  CAS  Google Scholar 

  87. Takeda A, Hirate M, Tamano H, Nishibaba D, Oku N (2003) Susceptibility to kainate-induced seizures under dietary zinc deficiency. J Neurochem 85:1575–1580

    PubMed  CAS  Google Scholar 

  88. Takeda A, Hirate M, Tamano H, Oku N (2003) Zinc movement in the brain under kainite-induced seizures. Epilepsy Res 54:123–129

    PubMed  CAS  Google Scholar 

  89. Takeda A, Sakurada N, Kanno S, Minami A, Oku N (2006) Response of extracelluar zinc in the ventral hippocampus against novelty stress. J Neurochem 99:670–676

    PubMed  CAS  Google Scholar 

  90. Takeda A, Ando M, Kanno S, Oku N (2009) Unique response of zinc in the hippocampus to behavioral stress and attenuation of subsequent mossy fiber long-term potentiation. Neurotoxicology 30:712–717

    PubMed  CAS  Google Scholar 

  91. Takeda A, Tamano H, Oku N (2005) Involvement of unusual glutamate release in kainate-induced seizures in zinc-deficient adult rats. Epilepsy Res 66:137–143

    PubMed  CAS  Google Scholar 

  92. Takeda A, Sakurada N, Ando M, Kanno S, Oku N (2009) Facilitation of zinc influx via AMPA/kainate receptor activation in the hippocampus. Neurochem Int 55:376–382

    PubMed  CAS  Google Scholar 

  93. Takeda A, Suzuki M, Tamano H, Ando M, Oku N (2010) Differential effects of zinc influx via AMPA/kainate receptor activation on subsequent induction of hippocampal CA1 LTP components. Brain Res 1354:188–195

    PubMed  CAS  Google Scholar 

  94. DeCarolis NA, Eisch AJ (2010) Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology 58:884–893

    PubMed  CAS  Google Scholar 

  95. Suh SW, Won SJ, Hamby AM, Yoo BH, Fan Y, Sheline CT, Tamano H, Takeda A, Liu J (2009) Decreased brain zinc availability reduces hippocampal neurogenesis in mice and rats. J Cereb Blood Flow Metab 29:1579–1588

    PubMed  CAS  Google Scholar 

  96. Whiteford HA, Peabody CA, Thiemann S, Kraemer HC, Csernansky JG, Berger PA (1987) The effect of age on baseline and postdexamethasone cortisol levels in major depressive disorder. Biol Psychiatry 22:1029–1032

    PubMed  CAS  Google Scholar 

  97. Starkman MN, Gebarski SS, Berent S, Schteingart DE (1992) Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol Psychiatry 32:756–765

    PubMed  CAS  Google Scholar 

  98. Seed JA, Dixon RA, McCluskey SE, Young AH (2000) Basal activity of the hypothalamic-pituitary-adrenal axis and cognitive function in anorexia nervosa. Eur Arch Psychiatry Clin Neurosci 250:11–15

    PubMed  CAS  Google Scholar 

  99. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW (1996) Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 93:3908–3913

    PubMed  CAS  Google Scholar 

  100. Sheline YI, Sanghavi M, Mintun MA, Gado MH (1999) Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci 19:5034–5043

    PubMed  CAS  Google Scholar 

  101. Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157:115–118

    PubMed  CAS  Google Scholar 

  102. O'Brien JT, Ames D, Schweitzer I, Colman P, Desmond P, Tress B (1996) Clinical and magnetic resonance imaging correlates of hypothalamic-pituitary-adrenal axis function in depression and Alzheimer's disease. Br J Psychiatry 168:679–687

    PubMed  Google Scholar 

  103. Kawata M, Yuri K, Ozawa H, Nishi M, Ito T, Hu Z, Lu H, Yoshida M (1998) Steroid hormones and their receptors in the brain. J Steroid Biochem Mol Biol 65:273–280

    PubMed  CAS  Google Scholar 

  104. Maes M, D'Haese PC, Scharpé S, D'Hondt P, Cosyns P, De Broe ME (1994) Hypozincemia in depression. J Affect Disord 31:135–140

    PubMed  CAS  Google Scholar 

  105. Maes M, De Vos N, Demedts P, Wauters A, Neels H (1999) Lower serum zinc in major depression in relation to changes in serum acute phase proteins. J Affect Disord 56:189–194

    PubMed  CAS  Google Scholar 

  106. Maes M, Vandoolaeghe E, Neels H, Demedts P, Wauters A, Meltzer HY, Carlo A, Roger D (1997) Lower serum zinc in major depression is a sensitive marker of treatment resistance and of the immune/inflammatory response in that illness. Biol Psychiatry 42:349–358

    PubMed  CAS  Google Scholar 

  107. Siwek M, Dudek D, Paul IA, Sowa-Kućma M, Zieba A, Popik P, Pilc A, Nowak G (2009) Zinc supplementation augments efficacy of imipramine in treatment resistant patients: a double blind, placebo-controlled study. J Affect Disord 118:187–195

    PubMed  CAS  Google Scholar 

  108. Siwek M, Dudek D, Schlegel-Zawadzka M, Morawska A, Piekoszewski W, Opoka W, Zięba A, Pilc A, Popik P, Nowak G (2010) Serum zinc level in depressed patients during zinc supplementation of imipramine treatment. J Affect Disord (in press)

  109. Takeda A, Tamano H, Kan F, Itoh H, Oku N (2007) Anxiety-like behavior of young rats after 2-week zinc deprivation. Behav Brain Res 177:1–6

    PubMed  CAS  Google Scholar 

  110. Takeda A, Tamano H, Kan F, Hanajima T, Yamada K, Oku N (2008) Enhancement of social isolation-induced aggressive behavior of young mice by zinc deficiency. Life Sci 82:909–914

    PubMed  CAS  Google Scholar 

  111. Whittle N, Lubec G, Singewald N (2009) Zinc deficiency induces enhanced depression-like behaviour and altered limbic activation reversed by antidepressant treatment in mice. Amino Acids 36:147–158

    PubMed  CAS  Google Scholar 

  112. Tassabehji NM, Corniola RS, Alshingiti A, Levenson CW (2008) Zinc deficiency induces depression-like symptoms in adult rats. Physiol Behav 95:365–369

    PubMed  CAS  Google Scholar 

  113. Tamano H, Kan F, Kawamura M, Oku N, Takeda A (2009) Behavior in the forced swim test and neurochemical changes in the hippocampus in young rats after 2-week zinc deprivation. Neurochem Int 55:536–541

    PubMed  CAS  Google Scholar 

  114. Takeda A, Hirate M, Tamano H, Oku N (2003) Release of glutamate and GABA in the hippocampus under zinc deficiency. J Neurosci Res 72:537–542

    PubMed  CAS  Google Scholar 

  115. Takeda A, Itoh H, Tamano H, Oku N (2006) Responsiveness to kainate in young rats after 2-week zinc deprivation. Biometals 19:565–572

    PubMed  CAS  Google Scholar 

  116. Watanabe M, Tamano H, Kikuchi T, Takeda A (2010) Susceptibility to stress in young rats after 2-week zinc deprivation. Neurochem Int 56:410–416

    PubMed  CAS  Google Scholar 

  117. Takeda A, Sakurada N, Kanno S, Ando M, Oku N (2008) Vulnerability to seizures induced by potassium dyshomeostasis in the hippocampus in aged rats. J Health Sci 54:37–42

    CAS  Google Scholar 

  118. Mocchegiani E, Giacconi R, Cipriano C, Muti E, Gasparini N, Malavolta M (2004) Are zinc-bound metallothionein isoforms (I + II and III) involved in impaired thymulin production and thymic involution during ageing? Immun Ageing 1:5

    PubMed  Google Scholar 

  119. Ricci A, Ramacci MT, Ghirardi O, Amenta F (1989) Age-related changes of the mossy fibre system in rat hippocampus: effect of long term acetyl-l-carnitine treatment. Arch Gerontol Geriatr 8:63–71

    PubMed  CAS  Google Scholar 

  120. Barili P, Fringuelli C, Ricci A, Rossodivita I, Sabbatini M (1997) Age-related changes of sulphide-silver staining in the rat hippocampus. Mech Ageing Dev 99:83–94

    PubMed  CAS  Google Scholar 

  121. Landfield PW, Eldridge JC (1994) Evolving aspects of the glucocorticoid hypothesis of brain aging: hormonal modulation of neuronal calcium homeostasis. Neurobiol Aging 15:579–588

    PubMed  CAS  Google Scholar 

  122. Ferrari E, Casarotti D, Muzzoni B, Albertelli N, Cravello L, Fioravanti M, Solerte SB, Magri F (2001) Age-related changes of the adrenal secretory pattern: possible role in pathological brain aging. Brain Res Brain Res Rev 37:294–300

    PubMed  CAS  Google Scholar 

  123. Billard JM (2006) Ageing, hippocampal synaptic activity and magnesium. Magnes Res 19:199–215

    PubMed  CAS  Google Scholar 

  124. Foster TC (2007) Calcium homeostasis and modulation of synaptic plasticity in the aged brain. Aging Cell 6:319–325

    PubMed  CAS  Google Scholar 

  125. Takeda A, Yamada K, Tamano H, Fuke S, Kawamura M, Oku N (2008) Hippocampal calcium dyshomeostasis and long-term potentiation in 2-week zinc deficiency. Neurochem Int 52:241–246

    PubMed  CAS  Google Scholar 

  126. Takeda A, Itoh H, Nagayoshi A, Oku N (2009) Abnormal calcium mobilization in hippocampal slices of epileptic animals fed a zinc-deficient diet. Epilepsy Res 83:73–80

    PubMed  CAS  Google Scholar 

  127. Gregus A, Wintink AJ, Davis AC, Kalynchuk LE (2005) Effect of repeated corticosterone injections and restraint stress on anxiety and depression-like behavior in male rats. Behav Brain Res 156:105–114

    PubMed  CAS  Google Scholar 

  128. Johnson SA, Fournier NM, Kalynchuk LE (2006) Effect of different doses of corticosterone on depression-like behavior and HPA axis responses to a novel stressor. Behav Brain Res 168:280–288

    PubMed  CAS  Google Scholar 

  129. Zhao Y, Ma R, Shen J, Su H, Xing D, Du L (2008) A mouse model of depression induced by repeated corticosterone injections. Eur J Pharmacol 581:113–120

    PubMed  CAS  Google Scholar 

  130. Mann JJ, Apter A, Bertolote J, Beautrais A, Currier D, Haas A, Hegerl U, Lonnqvist J, Malone K, Marusic A, Mehlum L, Patton G, Phillips M, Rutz W, Rihmer Z, Schmidtke A, Shaffer D, Silverman M, Takahashi Y, Varnik A, Wasserman D, Yip P, Hendin H (2005) Suicide prevention strategies: a systematic review. JAMA 294:2064–2074

    PubMed  CAS  Google Scholar 

  131. Abreu LN, Lafer B, Baca-Garcia E, Oquendo MA (2009) Suicidal ideation and suicide attempts in bipolar disorder type I: an update for the clinician. Rev Bras Psiquiatr 31:271–280

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Takeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, A. Zinc Signaling in the Hippocampus and Its Relation to Pathogenesis of Depression. Mol Neurobiol 44, 166–174 (2011). https://doi.org/10.1007/s12035-010-8158-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-010-8158-9

Keywords

Navigation