Skip to main content

Advertisement

Log in

The Neurobiology of Depression: an Integrated Overview from Biological Theories to Clinical Evidence

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Depressive disorders are heterogeneous diseases, and the complexity of symptoms has led to the formulation of several aethiopathological hypotheses. This heterogeneity may account for the following open issues about antidepressant therapy: (i) antidepressants show a time lag between pharmacological effects, within hours from acute drug administration, and therapeutic effects, within two-four weeks of subchronic treatment; (ii) this latency interval is critical for the patient because of the possible further mood worsening that may result in suicide attempts for the seemingly ineffective therapy and for the apparent adverse effects; (iii) and only 60–70 % of treated patients successfully respond to therapy. In this review, the complexity of the biological theories that try to explain the molecular mechanisms of these diseases is considered, encompassing (i) the classic “monoaminergic hypothesis” alongside the updated hypothesis according to which long-term therapeutical action of antidepressants is mediated by intracellular signal transduction pathways and (ii) the hypothalamic–pituitary-adrenal axis involvement. Although these models have guided research efforts in the field for decades, they have not generated a compelling and conclusive model either for depression pathophysiology or for antidepressant drugs’ action. So, other emerging theories are discussed: (iii) the alterations of neuroplasticity and neurotrophins in selective vulnerable cerebral areas; (iv) the involvement of inflammatory processes; (v) and the alterations in mitochondrial function and neuronal bioenergetics. The focus is put on the molecular and theoretical links between all these hypotheses, which are not mutually exclusive but otherwise tightly correlated, giving an integrated and comprehensive overview of the neurobiology of depressive disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cleare AJ (2004) Biological models of unipolar depression. In: Power M (ed) Mood disorders: a handbook of science and practice. John Wiley & Sons, Chichester, pp. 29–46

    Google Scholar 

  2. Zhang X, Gainetdinov RR, Beaulieu JM, Sotnikova TD, Burch LH, Williams RB, et al. (2005) Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipolar major depression. Neuron 45:11–16

    Article  CAS  PubMed  Google Scholar 

  3. Walther DJ, Bader M (2003) A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 66:1673–1680

    Article  CAS  PubMed  Google Scholar 

  4. Meyer JH, Ginovart N, Boovariwala A, Sagrati S, Hussey D, Garcia A, et al. (2006) Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry 63:1209–1216

    Article  CAS  PubMed  Google Scholar 

  5. Lambert G, Johansson M, Agren H, Friberg P (2000) Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: evidence in support of the catecholamine hypothesis of mood disorders. Arch Gen Psychiatry 57:787–793

    Article  CAS  PubMed  Google Scholar 

  6. Miller HL, Delgado PL, Salomon RM, Berman R, Krystal JH, Heninger GR, et al. (1996) Clinical and biochemical effects of catecholamine depletion on antidepressant-induced remission of depression. Arch Gen Psychiatry 53:117–128

    Article  CAS  PubMed  Google Scholar 

  7. Ruhé HG, Mason NS, Schene AH (2007) Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 12:331–359

    Article  PubMed  CAS  Google Scholar 

  8. Banerjee SP, Kung LS, Riggi SJ, Chanda SK (1977) Development of beta-adrenergic receptor subsensitivity by antidepressants. Nature 268:455–456

    Article  CAS  PubMed  Google Scholar 

  9. Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54:597–606

    Article  CAS  PubMed  Google Scholar 

  10. Ordway GA, Schenk J, Stockmeier CA, May W, Klimek V (2003) Elevated agonist binding to alpha2-adrenoceptors in the locus coeruleus in major depression. Biol Psychiatry 53:315–323

    Article  CAS  PubMed  Google Scholar 

  11. Blier P, de Montigny C (1994) Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15:220–226

    Article  CAS  PubMed  Google Scholar 

  12. Pitchot W, Hansenne M, Pinto E, Reggers J, Fuchs S, Ansseau M (2005) 5-Hydroxytryptamine 1A receptors, major depression, and suicidal behavior. Biol Psychiatry 58:854–858

    Article  CAS  PubMed  Google Scholar 

  13. Savitz JB, Drevets WC (2013) Neuroreceptor imaging in depression. Neurobiol Dis 52:49–65

    Article  CAS  PubMed  Google Scholar 

  14. Svenningsson P, Chergui K, Rachleff I, Flajolet M, Zhang X, El Yacoubi M, et al. (2006) Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 311:77–80

    Article  CAS  PubMed  Google Scholar 

  15. Carhart-Harris RL, Bolstridge M, Rucker J, Day CM, Erritzoe D, Kaelen M, et al. (2016) Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. Lancet Psychiatry. doi:10.1016/S2215-0366(16)30065-7

    Google Scholar 

  16. Hamon M, Blier P (2013) Monoamine neurocircuitry in depression and strategies for new treatments. Prog Neuro-Psychopharmacol Biol Psychiatry 45:54–63

    Article  CAS  Google Scholar 

  17. Moretti A, Gorini A, Villa RF (2003) Affective disorders, antidepressant drugs and brain metabolism. Mol Psychiatry 8:773–785

    Article  CAS  PubMed  Google Scholar 

  18. Shelton RC, Manier DH, Peterson CS, Ellis TC, Sulser F (1999) Cyclic AMP-dependent protein kinase in subtypes of major depression and normal volunteers. Int J Neuropsychopharmacol 2:187–192

    Article  CAS  PubMed  Google Scholar 

  19. Perez J, Tardito D, Racagni G, Smeraldi E, Zanardi R (2001) Protein kinase A and Rap1 levels in platelets of untreated patients with major depression. Mol Psychiatry 6:44–49

    Article  CAS  PubMed  Google Scholar 

  20. Shimon H, Agam G, Belmaker RH, Hyde TM, Kleinman JE (1997) Reduced frontal cortex inositol levels in post-mortem brain of suicide victims and patients with bipolar disorder. Am J Psychiatry 154:1148–1150

    Article  CAS  PubMed  Google Scholar 

  21. Coupland NJ, Ogilvie CJ, Hegadoren KM, Seres P, Hanstock CC, Allen PS (2005) Decreased prefrontal myo-inositol in major depressive disorder. Biol Psychiatry 57:1526–1534

    Article  CAS  PubMed  Google Scholar 

  22. Dowlatshahi D, MacQueen GM, Wang JF, Young LT (1998) Increased temporal cortex CREB concentrations and antidepressant treatment in major depression. Lancet 352:1754–1755

    Article  CAS  PubMed  Google Scholar 

  23. Lowther S, Katona CL, Crompton MR, Horton RW (1997) Brain [3H]cAMP binding sites are unaltered in depressed suicides, but decreased by antidepressants. Brain Res 758:223–228

    Article  CAS  PubMed  Google Scholar 

  24. Blendy JA (2006) The role of CREB in depression and antidepressant treatment. Biol Psychiatry 59:1144–1150

    Article  CAS  PubMed  Google Scholar 

  25. Fields A, Li PP, Kish SJ, Warsh JJ (1999) Increased cyclic AMP-dependent protein kinase activity in post-mortem brain from patients with bipolar affective disorder. J Neurochem 73:1704–1710

    Article  CAS  PubMed  Google Scholar 

  26. Wang SJ, Su CF, Kuo YH (2003) Fluoxetine depresses glutamate exocytosis in the rat cerebrocortical nerve terminals (synaptosomes) via inhibition of P/Q-type Ca2+ channels. Synapse 48:170–177

    Article  CAS  PubMed  Google Scholar 

  27. Soares JC, Mallinger AG (1996) Abnormal phosphatidylinositol (PI)-signaling in bipolar disorder. Biol Psychiatry 39:461–464

    Article  CAS  PubMed  Google Scholar 

  28. Mann JJ (2005) The medical management of depression. N Engl J Med 353:1819–1834

    Article  CAS  PubMed  Google Scholar 

  29. Shelton RC (2007) The molecular neurobiology of depression. Psychiatr Clin North Am 30:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  30. Popoli M, Yan Z, McEwen B, Sanacora G (2013) Stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 13:22–37

    Google Scholar 

  31. Villa RF, Ferrari F, Gorini A (2012) Energy metabolism of rat cerebral cortex, hypothalamus and hypophysis during ageing. Neuroscience 227:55–66

    Article  CAS  PubMed  Google Scholar 

  32. Pariante CM, Lightman SL (2008) The HPA axis in major depression: classical theories and new developments. Trends Neurosci 31:464–468

    Article  CAS  PubMed  Google Scholar 

  33. Nemeroff CB, Vale WW (2005) The neurobiology of depression: inroads to treatment and new drug discovery. J Clin Psychiatry 66:S5–S13

    Article  Google Scholar 

  34. Herbert J, Goodyer IM, Grossman AB, Hastings MH, de Kloet ER, Lightman SL, et al. (2006) Do corticosteroids damage the brain? J Neuroendocrinol 18:393–411

    Article  CAS  PubMed  Google Scholar 

  35. Carroll BJ, Cassidy F, Naftolowitz D, Tatham NE, Wilson WH, Iranmanesh A, et al. (2007) Pathophysiology of hypercortisolism in depression. Acta Psychiatr Scand Suppl 433:90–103

    Article  CAS  Google Scholar 

  36. Pariante CM (2006) The glucocorticoid receptor: part of the solution or part of the problem? J Psychopharmacol 20:S79–S84

    Article  Google Scholar 

  37. Kendler KS, Gardner CO, Prescott CA (2006) Toward a comprehensive developmental model for major depression in men. Am J Psychiatry 163:115–124

    Article  PubMed  Google Scholar 

  38. Dowlati Y, Herrmann N, Swardfager WL, Reim EK, Lanctôt KL (2010) Efficacy and tolerability of antidepressants for treatment of depression in coronary artery disease: a meta-analysis. Can J Psychiatr 55:91–99

    Article  Google Scholar 

  39. Howren MB, Lamkin DM, Suls J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 71:171–186

    Article  CAS  PubMed  Google Scholar 

  40. Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Capuron L, Fornwalt FB, Knight BT, Harvey PD, Ninan PT, Miller AH (2009) Does cytokine-induced depression differ from idiopathic major depression in medically healthy individuals? J Affect Disord 119:181–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Iwata M, Ota KT, Duman RS (2013) The inflammasome: pathways linking psychological stress, depression, and systemic illnesses. Brain Behav Immun 31:105–114

    Article  CAS  PubMed  Google Scholar 

  43. Miller AH (2010) Depression and immunity: a role for T cells? Brain Behav Immun 24:1–8

    Article  CAS  PubMed  Google Scholar 

  44. Koo JW, Duman RS (2008) IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci U S A 105:751–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brydon L, Harrison NA, Walker C, Steptoe A, Critchley HD (2008) Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans. Biol Psychiatry 63:1022–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maes M (2011) Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog Neuro-Psychopharmacol Biol Psychiatry 35:664–675

    Article  CAS  Google Scholar 

  47. Stein M, Miller AH, Trestman RL (1991) Depression, the immune system, and health and illness. Findings in search of meaning. Arch Gen Psychiatry 48:171–177

    Article  CAS  PubMed  Google Scholar 

  48. Irwin MR, Miller AH (2007) Depressive disorders and immunity: 20 years of progress and discovery. Brain Behav Immun 21:374–383

    Article  CAS  PubMed  Google Scholar 

  49. Sephton SE, Dhabhar FS, Keuroghlian AS, Giese-Davis J, McEwen BS, Ionan AC, et al. (2009) Depression, cortisol, and suppressed cell-mediated immunity in metastatic breast cancer. Brain Behav Immun 23:1148–1155

    Article  CAS  PubMed  Google Scholar 

  50. Szuster-Ciesielska A, Słotwińska M, Stachura A, Marmurowska-Michałowska H, Dubas-Slemp H, Bojarska-Junak A, et al. (2008) Accelerated apoptosis of blood leukocytes and oxidative stress in blood of patients with major depression. Prog Neuro-Psychopharmacol Biol Psychiatry 32:686–694

    Article  CAS  Google Scholar 

  51. Beissert S, Schwarz A, Schwarz T (2006) Regulatory T cells. J Invest Dermatol 126:15–24

    Article  CAS  PubMed  Google Scholar 

  52. McEwen BS, Biron CA, Brunson KW, Bulloch K, Chambers WH, Dhabhar FS, et al. (1997) The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine and immune interactions. Brain Res Brain Res Rev 23:79–133

    Article  CAS  PubMed  Google Scholar 

  53. Lee LF, Lih CJ, Huang CJ, Cao T, Cohen SN, McDevitt HO (2008) Genomic expression profiling of TNF-alpha-treated BDC2.5 diabetogenic CD4+ T cells. Proc Natl Acad Sci U S A 105:10107–10112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fišar Z, Raboch J (2008) Depression, antidepressants, and peripheral blood components. Neuroendocrinol Lett 29:17–28

    PubMed  Google Scholar 

  55. Gould E, Tanapat P, Rydel T, Hastings N (2000) Regulation of hippocampal neurogenesis in adulthood. Biol Psychiatry 48:715–720

    Article  CAS  PubMed  Google Scholar 

  56. Manji HK, Drevets WC, Charney DS (2001) The cellular neurobiology of depression. Nat Med 7:541–547

    Article  CAS  PubMed  Google Scholar 

  57. Rajkowska G (2000) Post-mortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 48:766–777

    Article  CAS  PubMed  Google Scholar 

  58. Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15:1768–1777

    CAS  PubMed  Google Scholar 

  59. Duman RS (2002) Pathophysiology of depression: the concept of synaptic plasticity. Eur Psychiatry 17:S306–S310

    Article  Google Scholar 

  60. Siuciak JA, Boylan C, Fritsche M, Altar CA, Lindsay RM (1996) BDNF increases monoaminergic activity in rat brain following intracerebroventricular or intraparenchymal administration. Brain Res 710:11–20

    Article  CAS  PubMed  Google Scholar 

  61. Shirayama Y, Chen ACH, Duman RS (2000) Antidepressant-like effects of BDNF and NT-3 in behavioral models of depression. Abstr Soc Neurosci 26:1042

  62. Lespérance F, Frasure-Smith N (2007) Depression and heart disease. Cleve Clin J Med 74:S63–S66

    Article  PubMed  Google Scholar 

  63. Taylor CB, Youngblood ME, Catellier D, Veith RC, Carney RM, Burg MM, ENRICHD Investigators, et al. (2005) Effects of antidepressant medication on morbidity and mortality in depressed patients after myocardial infarction. Arch Gen Psychiatry 62:792–798

    Article  CAS  PubMed  Google Scholar 

  64. Gardner A, Boles RG (2005) Is a “mitochondrial psychiatry” in the future? A review. Curr Psychiatr Rev 1:255–271

    Article  CAS  Google Scholar 

  65. DiMauro S, Schon EA (2008) Mitochondrial disorders in the nervous system. Annu Rev Neurosci 31:91–123

    Article  CAS  PubMed  Google Scholar 

  66. DiMauro S, Hirano M, Kaufmann P, Mann JJ (2006) Mitochondrial psychiatry. In: DiMauro S, Hirano M, Schon ES (eds) Mitochondrial medicine. Informa Healthcare, London, pp 261–277

  67. Price JL, Drevets WC (2010) Neurocircuitry of mood disorders. Neuropsychopharmacology 35:192–216

    Article  PubMed  Google Scholar 

  68. Drevets WC (1999) Prefrontal cortical-amygdalar metabolism in major depression. Ann N Y Acad Sci 877:614–637

    Article  CAS  PubMed  Google Scholar 

  69. Price JL, Drevets WC (2012) Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci 16:61–71

    Article  PubMed  Google Scholar 

  70. Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213:93–118

    Article  PubMed  PubMed Central  Google Scholar 

  71. Strakowski SM, DelBello MP, Adler C, Cecil DM, Sax KW (2000) Neuroimaging in bipolar disorder. Bipolar Disord 2:148–164

    Article  CAS  PubMed  Google Scholar 

  72. Stoll AL, Renshaw PF, Yurgelun-Todd DA, Cohen BM (2000) Neuroimaging in bipolar disorder: what have we learned? Biol Psychiatry 48:505–517

    Article  CAS  PubMed  Google Scholar 

  73. Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 3:981–989

    Google Scholar 

  74. Clark JB (1998) N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 20:271–276

    Article  CAS  PubMed  Google Scholar 

  75. Baslow MH (2003) Brain N-acetylaspartate as a molecular water pump and its role in the etiology of Canavan disease: a mechanistic explanation. J Mol Neurosci 21:185–190

    Article  CAS  PubMed  Google Scholar 

  76. Blakely RD, Coyle JT (1988) The neurobiology of N-acetylaspartylglutamate. Int Rev Neurobiol 30:39–100

    Article  CAS  PubMed  Google Scholar 

  77. Madhavarao CN, Chinopoulos C, Chandrasekaran K, Namboodiri MA (2003) Characterization of the N-acetylaspartate biosynthetic enzyme from rat brain. J Neurochem 86:824–835

    Article  CAS  PubMed  Google Scholar 

  78. Stork C, Renshaw PF (2005) Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 10:900–919

    Article  CAS  PubMed  Google Scholar 

  79. Demougeot C, Garnier P, Mossiat C, Bertrand N, Giroud M, Beley A, et al. (2001) N-acetylaspartate, a marker of both cellular dysfunction and neuronal loss: its relevance to studies of acute brain injury. J Neurochem 77:408–415

    Article  CAS  PubMed  Google Scholar 

  80. Signoretti S, Marmarou A, Tavazzi B, Lazzarino G, Beaumont A, Vagnozzi R (2001) N-acetylaspartate reduction as a measure of injury severity and mitochondrial dysfunction following diffuse traumatic brain injury. J Neurotrauma 18:977–991

    Article  CAS  PubMed  Google Scholar 

  81. Charles HC, Lazeyras F, Krishnan KR, Boyko OB, Payne M, Moore D (1994) Brain choline in depression: in vivo detection of potential pharmacodynamic effects of antidepressant therapy using hydrogen localized spectroscopy. Prog Neuro-Psychopharmacol Biol Psychiatry 18:1121–1127

    Article  CAS  Google Scholar 

  82. van der Hart MG, Czéh B, de Biurrun G, Michaelis T, Watanabe T, Natt O, et al. (2002) Substance P receptor antagonist and clomipramine prevent stress-induced alterations in cerebral metabolites, cytogenesis in the dentate gyrus and hippocampal volume. Mol Psychiatry 7:933–941

    Article  PubMed  CAS  Google Scholar 

  83. Yildiz-Yesiloglu A, Ankerst DP (2006) Review of 1H magnetic resonance spectroscopy findings in major depressive disorder: a meta-analysis. Psychiatry Res 147:1–25

    Article  CAS  PubMed  Google Scholar 

  84. Pfleiderer B, Michael N, Erfurth A, Ohrmann P, Hohmann U, Wolgast M, et al. (2003) Effective electroconvulsive therapy reverses glutamate/glutamine deficit in the left anterior cingulum of unipolar depressed patients. Psychiatry Res 122:185–192

    Article  CAS  PubMed  Google Scholar 

  85. Winsberg ME, Sachs N, Tate DL, Adalsteinsson E, Spielman D, Ketter TA (2000) Decreased dorsolateral prefrontal N-acetyl aspartate in bipolar disorder. Biol Psychiatry 47:475–481

    Article  CAS  PubMed  Google Scholar 

  86. Bertolino A, Knable MB, Saunders RC, Callicott JH, Kolachana B, Mattay VS, et al. (1999) The relationship between dorsolateral prefrontal N-acetylaspartate measures and striatal dopamine activity in schizophrenia. Biol Psychiatry 45:660–667

    Article  CAS  PubMed  Google Scholar 

  87. Deicken RF, Pegues MP, Anzalone S, Feiwell R, Soher B (2003) Lower concentration of hippocampal N-acetylaspartate in familial bipolar I disorder. Am J Psychiatry 160:873–882

    Article  PubMed  Google Scholar 

  88. Deicken RF, Eliaz Y, Feiwell R, Schuff N (2001) Increased thalamic N-acetylaspartate in male patients with familial bipolar I disorder. Psychiatry Res 106:35–45

    Article  CAS  PubMed  Google Scholar 

  89. Zubieta JK, Huguelet P, Ohl LE, Koeppe RA, Kilbourn MR, Carr JM, et al. (2000) High vesicular monoamine transporter binding in asymptomatic bipolar I disorder: sex differences and cognitive correlates. Am J Psychiatry 157:1619–1628

    Article  CAS  PubMed  Google Scholar 

  90. Kato T, Murashita J, Shioiri T, Hamakawa H, Inubushi T (1996) Effect of photic stimulation on energy metabolism in the human brain measured by 31P-MR spectroscopy. J Neuropsychiatr Clin Neurosci 8:417–422

    Article  CAS  Google Scholar 

  91. Kato T, Takahashi S, Shioiri T, Inubushi T (1992) Brain phosphorous metabolism in depressive disorders detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 26:223–230

    Article  CAS  PubMed  Google Scholar 

  92. Pettegrew JW, Levine J, Gershon S, Stanley JA, Servan-Schreiber D, Panchalingam K, et al. (2002) 31P-MRS study of acetyl-L-carnitine treatment in geriatric depression: preliminary results. Bipolar Disord 4:61–66

    Article  CAS  PubMed  Google Scholar 

  93. Kato T, Takahashi S, Shioiri T, Murashita J, Hamakawa H, Inubushi T (1994) Reduction of brain phosphocreatine in bipolar II disorder detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 31:125–133

    Article  CAS  PubMed  Google Scholar 

  94. Kato T, Shioiri T, Murashita J, Hamakawa H, Inubushi T, Takahashi S (1995) Lateralized abnormality of high-energy phosphate and bilateral reduction of phosphomonoester measured by phosphorus-31 magnetic resonance spectroscopy of the frontal lobes in schizophrenia. Psychiatry Res 61:151–160

    Article  CAS  PubMed  Google Scholar 

  95. Deicken RF, Fein G, Weiner MW (1995) Abnormal frontal lobe phosphorous metabolism in bipolar disorder. Am J Psychiatry 152:915–918

    Article  CAS  PubMed  Google Scholar 

  96. Moore CM, Christensen JD, Lafer B, Fava M, Renshaw PF (1997) Lower levels of nucleoside triphosphate in the basal ganglia of depressed subjects: a phosphorous-31 magnetic resonance spectroscopy study. Am J Psychiatry 154:116–118

    Article  CAS  PubMed  Google Scholar 

  97. Volz HP, Rzanny R, Riehemann S, May S, Hegewald H, Preussler B, et al. (1998) 31P magnetic resonance spectroscopy in the frontal lobe of major depressed patients. Eur Arch Psychiatry Clin Neurosci 248:289–295

    Article  CAS  PubMed  Google Scholar 

  98. Renshaw PF, Parow AM, Hirashima F, Ke Y, Moore CM, Frederick BB, et al. (2001) Multinuclear magnetic resonance spectroscopy studies of brain purines in major depression. Am J Psychiatry 158:2048–2055

    Article  CAS  PubMed  Google Scholar 

  99. Brambilla P, Stanley JA, Nicoletti MA, Sassi RB, Mallinger AG, Frank E, et al. (2005) 1H magnetic resonance spectroscopy study of dorsolateral prefrontal cortex in unipolar mood disorder patients. Psychiatry Res 138:131–139

    Article  PubMed  Google Scholar 

  100. Kato T, Hamakawa H, Shioiri T, Murashita J, Takahashi Y, Takahashi S, et al. (1996) Choline-containing compounds detected by proton magnetic resonance spectroscopy in the basal ganglia in bipolar disorder. J Psychiatry Neurosci 21:248–254

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Rudkin TM, Arnold DL (1999) Proton magnetic resonance spectroscopy for the diagnosis and management of cerebral disorders. Arch Neurol 56:919–926

    Article  CAS  PubMed  Google Scholar 

  102. Barkai AI, Dunner DL, Gross HA, Mayo P, Fieve RR (1978) Reduced myo-inositol levels in cerebrospinal fluid from patients with affective disorder. Biol Psychiatry 13:65–72

    CAS  PubMed  Google Scholar 

  103. Manji HK, Bersudsky Y, Chen G, Belmaker RH, Potter WZ (1996) Modulation of protein kinase C isozymes and substrates by lithium: the role of myo-inositol. Neuropsychopharmacology 15:370–381

    Article  CAS  PubMed  Google Scholar 

  104. Davanzo P, Yue K, Thomas MA, Belin T, Mintz J, Venkatraman TN, et al. (2003) Proton magnetic resonance spectroscopy of bipolar disorder versus intermittent explosive disorder in children and adolescents. Am J Psychiatry 160:1442–1452

    Article  PubMed  Google Scholar 

  105. Cooper AJ (2012) The role of glutamine synthetase and glutamate dehydrogenase in cerebral ammonia homeostasis. Neurochem Res 37:2439–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Morgan CJ, Curran HV (2012) Ketamine use: a review. Addiction 107:27–38

    Article  PubMed  Google Scholar 

  107. Newport DJ, Carpenter LL, McDonald WM, Potash JB, Tohen M, Nemeroff CB (2015) Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression. Am J Psychiatry 172:950–966

    Article  PubMed  Google Scholar 

  108. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533:481–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dager SR, Friedman SD, Parow A, Demopulos C, Stoll AL, Lyoo IK, et al. (2004) Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry 61:450–458

    Article  CAS  PubMed  Google Scholar 

  110. Gruetter R, Novotny EJ, Boulware SD, Mason GF, Rothman DL, Shulman GI, et al. (1994) Localized 13C NMR spectroscopy in the human brain of amino acid labeling from D-[13C]glucose. J Neurochem 63:1377–1385

    Article  CAS  PubMed  Google Scholar 

  111. Nowak G, Ordway GA, Paul IA (1995) Alterations in the N-methyl-D-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res 675:157–164

    Article  CAS  PubMed  Google Scholar 

  112. Petty F, Kramer GL, Dunnam D, Rush AJ (1990) Plasma GABA in mood disorders. Psychopharmacol Bull 26:157–161

    CAS  PubMed  Google Scholar 

  113. Paul IA, Nowak G, Layer RT, Popik P, Skolnick P (1994) Adaptation of the N-methyl-D-aspartate receptor complex following chronic antidepressant treatments. J Pharmacol Exp Ther 269:95–102

    CAS  PubMed  Google Scholar 

  114. Rauch SL, Renshaw PF (1995) Clinical neuroimaging in psychiatry. Harv Rev Psychiatry 2:297–312

    Article  CAS  PubMed  Google Scholar 

  115. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim S-G, Merkle H, et al. (1993) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 89:5951–5955

    Article  Google Scholar 

  116. Robitaille PM, Abduljalil AM, Kangarlu A, Zhang X, Yu Y, Burgess R, et al. (1988) Human magnetic resonance imaging at 8 T. NMR Biomed 12:315–319

    Google Scholar 

  117. Olszewska A, Szewczyk A (2013) Mitochondria as a pharmacological target: magnum overview. IUBMB Life 65:273–281

    Article  CAS  PubMed  Google Scholar 

  118. Iotti S, Sabatini A, Vacca A (2010) Chemical and biochemical thermodynamics: from ATP hydrolysis to a general reassessment. J Phys Chem B 114:1985–1993

    Article  CAS  PubMed  Google Scholar 

  119. Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J Appl Physiol 100:328–335

    Article  CAS  PubMed  Google Scholar 

  120. Nelson DL, Cox MM (2013) Lehninger’s principles of biochemistry, 6th edn. W.H. Freeman Publisher

  121. Simpson PB, Russell JT (1998) Role of mitochondrial Ca2+ regulation in neuronal and glial cell signalling. Brain Res Brain Res Rev 26:72–81

    Article  CAS  PubMed  Google Scholar 

  122. Quiroz JA, Gray NA, Kato T, Manji HK (2008) Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 33:2551–2565

    Article  CAS  PubMed  Google Scholar 

  123. Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60:748–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Aronis A, Melendez JA, Golan O, Shilo S, Dicter N, Tirosh O (2003) Potentiation of Fas-mediated apoptosis by attenuated production of mitochondria-derived reactive oxygen species. Cell Death Differ 10:335–344

    Article  CAS  PubMed  Google Scholar 

  125. Forbes-Hernández TY, Giampieri F, Gasparrini M, Mazzoni L, Quiles JL, Alvarez-Suarez JM, Battino M (2014) The effects of bioactive compounds from plant foods on mitochondrial function: a focus on apoptotic mechanisms. Food Chem Toxicol 68:154–182

    Article  PubMed  CAS  Google Scholar 

  126. Okamoto K, Kondo-Okamoto N (2012) Mitochondria and autophagy: critical interplay between the two homeostats. Biochim Biophys Acta 1820:595–600

    Article  CAS  PubMed  Google Scholar 

  127. Jia J, Le W (2015) Molecular network of neuronal autophagy in the pathophysiology and treatment of depression. Neurosci Bull 31:427–434

    Article  CAS  PubMed  Google Scholar 

  128. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. (2015) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222

    Article  Google Scholar 

  129. Machado-Vieira R, Zanetti MV, Teixeira AL, Uno M, Valiengo LL, Soeiro-de-Souza MG, et al. (2015) Decreased AKT1/mTOR pathway mRNA expression in short-term bipolar disorder. Eur Neuropsychopharmacol 25:468–473

    Article  CAS  PubMed  Google Scholar 

  130. Zschocke J, Zimmermann N, Berning B, Ganal V, Holsboer F, Rein T (2011) Antidepressant drugs diversely affect autophagy pathways in astrocytes and neurons—dissociation from cholesterol homeostasis. Neuropsychopharmacology 36:1754–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gassen NC, Hartmann J, Schmidt MV, Rein T (2015) FKBP5/FKBP51 enhances autophagy to synergize with antidepressant action. Autophagy 11:578–580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Hroudová J, Fišar Z, Raboch J (2013) Mitochondrial functions in mood disorders. In: Kocabasoglu N (ed) Mood disorders. InTech Publisher, Rijeka, Croatia, pp 101–144

  133. Chada SR, Hollenbeck PJ (2004) Nerve growth factor signaling regulates motility and docking of axonal mitochondria. Curr Biol 14:1272–1276

    Article  CAS  PubMed  Google Scholar 

  134. Overly CC, Rieff HI, Hollenbeck PJ (1996) Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons. J Cell Sci 109:971–980

    CAS  PubMed  Google Scholar 

  135. Markham A, Cameron I, Franklin P, Spedding M (2004) BDNF increases rat brain mitochondrial respiratory coupling at complex I, but not complex II. Eur J Neurosci 20:1189–1196

    Article  CAS  PubMed  Google Scholar 

  136. McMahon FJ, Stine OC, Meyers DA, Simpson SG, DePaulo JR (1995) Patterns of maternal transmission in bipolar affective disorder. Am J Hum Genet 56:1277–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  137. DeLisi LE, Razi K, Stewart J, Relja M, Shields G, Smith AB, et al. (2000) No evidence for a parent-of-origin effect detected in the pattern of inheritance of schizophrenia. Biol Psychiatry 48:706–709

    Article  CAS  PubMed  Google Scholar 

  138. Meissner C, Bruse P, Mohamed SA, Schulz A, Warnk H, Storm T, et al. (2008) The 4977 bp deletion of mitochondrial DNA in human skeletal muscle, heart and different areas of the brain: a useful biomarker or more? Exp Gerontol 43:645–652

    Article  CAS  PubMed  Google Scholar 

  139. Karry R, Klein E, Ben-Shachar D (2004) Mitochondrial complex I subunits expression is altered in schizophrenia: a post-mortem study. Biol Psychiatry 55:676–684

    Article  CAS  PubMed  Google Scholar 

  140. Sabunciyan S, Kirches E, Krause G, Bogerts B, Mawrin C, Llenos IC, et al. (2007) Quantification of total mitochondrial DNA and mitochondrial common deletion in the frontal cortex of patients with schizophrenia and bipolar disorder. J Neural Transm 114:665–674

    Article  CAS  PubMed  Google Scholar 

  141. Shao L, Martin MV, Watson SJ, Schatzberg A, Akil H, Myers RM, et al. (2008) Mitochondrial involvement in psychiatric disorders. Ann Med 40:281–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ben-Shachar D, Karry R (2008) Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS One 3:e3676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Iwamoto K, Kakiuchi C, Bundo M, Ikeda K, Kato T (2004) Molecular characterization of bipolar disorder by comparing gene expression profiles of post-mortem brains of major mental disorders. Mol Psychiatry 9:406–416

    Article  CAS  PubMed  Google Scholar 

  144. Sibille E, Arango V, Galfalvy HC, Pavlidis P, Erraji-Benchekroun L, Ellis SP, et al. (2004) Gene expression profiling of depression and suicide in human prefrontal cortex. Neuropsychopharmacology 29:351–361

    Article  CAS  PubMed  Google Scholar 

  145. Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D (2006) Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: evidence for disease-associated changes. Proteomics 6:3414–3425

    Article  CAS  PubMed  Google Scholar 

  146. Andreazza AC, Shao L, Wang JF, Young LT (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 67:360–368

    Article  CAS  PubMed  Google Scholar 

  147. Gardner A, Johansson A, Wibom R, Nennesmo I, von Döbeln U, Hagenfeldt L, et al. (2003) Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord 76:55–68

    Article  CAS  PubMed  Google Scholar 

  148. Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 61:300–308

    Article  CAS  PubMed  Google Scholar 

  149. Sun X, Wang JF, Tseng M, Young LT (2006) Downregulation in components of the mitochondrial electron transport chain in the post-mortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci 31:189–196

    PubMed  PubMed Central  Google Scholar 

  150. Benes FM, Matzilevich D, Burke RE, Walsh J (2006) The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Mol Psychiatry 11:241–251

    Article  CAS  PubMed  Google Scholar 

  151. Rezin GT, Cardoso MR, Gonçalves CL, Scaini G, Fraga DB, Riegel RE, et al. (2008) Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem Int 53:395–400

    Article  CAS  PubMed  Google Scholar 

  152. Li J, Gould TD, Yuan P, Manji HK, Chen G (2003) Post-mortem interval effects on the phosphorylation of signaling proteins. Neuropsychopharmacology 28:1017–1025

    Article  CAS  PubMed  Google Scholar 

  153. Catts VS, Catts SV, Fernandez HR, Taylor JM, Coulson EJ, Lutze-Mann LH (2005) A microarray study of post-mortem mRNA degradation in mouse brain tissue. Brain Res Mol Brain Res 138:164–177

    Article  CAS  PubMed  Google Scholar 

  154. Souza ME, Polizello AC, Uyemura SA, Castro-Silva O, Curti C (1994) Effect of fluoxetine on rat liver mitochondria. Biochem Pharmacol 48:535–541

    Article  CAS  PubMed  Google Scholar 

  155. Abdel-Razaq W, Kendall DA, Bates TE (2011) The effects of antidepressants on mitochondrial function in a model cell system and isolated mitochondria. Neurochem Res 36:327–338

    Article  CAS  PubMed  Google Scholar 

  156. Byczkowski JZ, Borysewicz R (1979) The action of chlorpromazine and imipramine on rat brain mitochondria. Gen Pharmacol 10:369–372

    Article  CAS  PubMed  Google Scholar 

  157. Weinbach EC, Costa JL, Nelson BD, Claggett CE, Hundal T, Bradley D, et al. (1986) Effects of tricyclic antidepressant drugs on energy-linked reactions in mitochondria. Biochem Pharmacol 35:1445–1451

    Article  CAS  PubMed  Google Scholar 

  158. Curti C, Mingatto FE, Polizello AC, Galastri LO, Uyemura SA, Santos AC (1999) Fluoxetine interacts with the lipid bilayer of the inner membrane in isolated rat brain mitochondria, inhibiting electron transport and F1F0-ATPase activity. Mol Cell Biochem 199:103–109

    Article  CAS  PubMed  Google Scholar 

  159. González-Pardo H, Conejo NM, Arias JL, Monleón S, Vinader-Caerols C, Parra A (2008) Changes in brain oxidative metabolism induced by inhibitory avoidance learning and acute administration of amitriptyline. Pharmacol Biochem Behav 89:456–462

    Article  PubMed  CAS  Google Scholar 

  160. Katyare SS, Rajan RR (1995) Effect of long-term in vivo treatment with imipramine on the oxidative energy metabolism in rat brain mitochondria. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 112:353–357

    Article  CAS  PubMed  Google Scholar 

  161. Zhang WH, Wang H, Wang X, Narayanan MV, Stavrovskaya IG, Kristal BS, et al. (2008) Nortriptyline protects mitochondria and reduces cerebral ischemia/hypoxia injury. Stroke 39:455–562

    Article  PubMed  PubMed Central  Google Scholar 

  162. Villa RF, Gorini A, LoFaro A, Dell’Orbo C (1989) A critique on the preparation and enzymatic characterization of synaptic and non-synaptic mitochondria from hippocampus. Cell Mol Neurobiol 9:247–262

    Article  CAS  PubMed  Google Scholar 

  163. Villa RF, Ferrari F, Gorini A (2012) Effect of CDP-choline on age-dependent modifications of energy- and glutamate-linked enzyme activities in synaptic and non-synaptic mitochondria from rat cerebral cortex. Neurochem Int 61:1424–1432

    Article  CAS  PubMed  Google Scholar 

  164. Villa RF, Gorini A, Ferrari F, Hoyer S (2013) Energy metabolism of cerebral mitochondria during aging, ischemia and post-ischemic recovery assessed by functional proteomics of enzymes. Neurochem Int 63:765–781

    Article  CAS  PubMed  Google Scholar 

  165. Villa RF, Ferrari F, Gorini A, Brunello N, Tascedda F (2016) Effect of desipramine and fluoxetine on energy metabolism of cerebral mitochondria. Neuroscience 330:326–334

    Article  CAS  PubMed  Google Scholar 

  166. Segal DS, Kuczenski R, Mandell AJ (1974) Theoretical implications of drug-induced adaptive regulation for a biogenic amine hypothesis of affective disorder. Biol Psychiatry 9:147–159

    CAS  PubMed  Google Scholar 

  167. Racagni G, Brunello N, Tinelli D, Perez J (1992) New biochemical hypotheses on the mechanism of action of antidepressant drugs: cAMP-dependent phosphorylation system. Pharmacopsychiatry 25:51–55

    Article  CAS  PubMed  Google Scholar 

  168. Scholz KP, Miller RJ (1992) Inhibition of quantal transmitter release in the absence of calcium influx by a G protein-linked adenosine receptor at hippocampal synapses. Neuron 8:1139–1150

    Article  CAS  PubMed  Google Scholar 

  169. Levitan IB (1994) Modulation of ion channels by protein phosphorylation and dephosphorylation. Annu Rev Physiol 56:193–212

    Article  CAS  PubMed  Google Scholar 

  170. Popoli M, Brunello N, Perez J, Racagni G (2000) Second messenger-regulated protein kinases in the brain: their functional role and the action of antidepressant drugs. J Neurochem 74:21–33

    Article  CAS  PubMed  Google Scholar 

  171. Pessoa L, Adolphs R (2010) Emotion processing and the amygdala: from a “low road” to “many roads” of evaluating biological significance. Nat Rev Neurosci 11:773–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Phelps EA (2004) Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol 14:198–202

    Article  CAS  PubMed  Google Scholar 

  173. Morimoto M, Morita N, Ozawa H, Yokoyama K, Kawata M (1996) Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: an immunohistochemical and in situ hybridization study. Neurosci Res 26:235–269

    Article  CAS  PubMed  Google Scholar 

  174. Qi XR, Kamphuis W, Wang S, Wang Q, Lucassen PJ, Zhou JN, et al. (2013) Aberrant stress hormone receptor balance in the human prefrontal cortex and hypothalamic paraventricular nucleus of depressed patients. Psychoneuroendocrinology 38:863–870

    Article  CAS  PubMed  Google Scholar 

  175. Wang Q, Van Heerikhuize J, Aronica E, Kawata M, Seress L, Joels M, et al. (2013) Glucocorticoid receptor protein expression in human hippocampus; stability with age. Neurobiol Aging 34:1662–1673

    Article  CAS  PubMed  Google Scholar 

  176. Wang Q, Verweij EW, Krugers HJ, Joels M, Swaab DF, Lucassen PJ (2014) Distribution of the glucocorticoid receptor in the human amygdala; changes in mood disorder patients. Brain Struct Funct 219:1615–1626

    Article  CAS  PubMed  Google Scholar 

  177. Jasinska AJ, Lowry CA, Burmeister M (2012) Serotonin transporter gene, stress and raphe–raphe interactions: a molecular mechanism of depression. Trends Neurosci 35:395–402

    Article  CAS  PubMed  Google Scholar 

  178. Hofmann A, Frey A, Ott H, Petr Zilka T, Troxler F (1958) Elucidation of the structure and the synthesis of psilocybin. Experientia 14:397–399

    Article  CAS  PubMed  Google Scholar 

  179. Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, et al. (2005) 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 8:828–834

    Article  CAS  PubMed  Google Scholar 

  180. Holmes A (2008) Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease. Neurosci Biobehav Rev 32:1293–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Donner NC et al. (2011) Soc Neurosci Abstr 412:12

    Google Scholar 

  182. Koran LM, Hamilton SH, Hertzman M, Meyers BS, Halaris AE, Tollefson GD (1995) Predicting response to fluoxetine in geriatric patients with major depression. J Clin Psychopharmacol 15:421–427

    Article  CAS  PubMed  Google Scholar 

  183. Cuccurazzu B, Bortolotto V, Valente MM, Ubezio F, Koverech A, Canonico PL, et al. (2013) Upregulation of mGlu2 receptors via NF-kB p65 acetylation is involved in the proneurogenic and antidepressant effects of acetyl-L-carnitine. Neuropsychopharmacology 38:2220–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Nasca C, Xenos D, Barone Y, Caruso A, Scaccianoce S, Matrisciano F, et al. (2012) L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. PNAS 110:4804–4809

    Article  Google Scholar 

  185. Gorini A, D’Angelo A, Villa RF (1998) Action of L-acetylcarnitine on different cerebral mitochondrial populations from cerebral cortex. Neurochem Res 23:1485–1491

    Article  CAS  PubMed  Google Scholar 

  186. Gorini A, D’Angelo A, Villa RF (1999) Energy metabolism of synaptosomal subpopulations from different neuronal systems of rat hippocampus: effect of L-acetylcarnitine administration in vivo. Neurochem Res 24:617–624

    Article  CAS  PubMed  Google Scholar 

  187. Villa RF, Gorini A (1991) Action of L-acetylcarnitine on different cerebral mitochondrial populations from hippocampus and striatum during aging. Neurochem Res 16:1125–1132

    Article  CAS  PubMed  Google Scholar 

  188. Villa RF, Gorini A, Zanada F, Benzi G (1986) Action of L-acetylcarnitine on different cerebral mitochondrial populations from hippocampus. Arch Int Pharmacodyn Ther 279:195–211

    CAS  PubMed  Google Scholar 

  189. Villa RF, Ferrari F, Gorini A (2011) Effect of in vivo L-acetylcarnitine administration on ATP-ases enzyme systems of synaptic plasma membranes from rat cerebral cortex. Neurochem Res 36:1372–1382

    Article  CAS  PubMed  Google Scholar 

  190. Villa RF, Ferrari F, Gorini A (2013) ATP-ases of synaptic plasma membranes in striatum: enzymatic systems for synapses functionality by in vivo administration of L-acetylcarnitine in relation to Parkinson’s disease. Neuroscience 248C:414–426

    Article  CAS  Google Scholar 

  191. Ferrari F, Gorini A, Villa RF (2015) Functional proteomics of synaptic plasma membrane ATP-ases of rat hippocampus: effect of l-acetylcarnitine and relationships with dementia and depression pathophysiology. Eur J Pharmacol 756:67–74

    Article  CAS  PubMed  Google Scholar 

  192. Hokin-Neaverson M, Jefferson JW (1989) Deficient erythrocyte NaK-ATPase activity in different affective states in bipolar affective disorder and normalization by lithium therapy. Neuropsychobiology 22:18–25

    Article  CAS  PubMed  Google Scholar 

  193. Gamaro GD, Streck EL, Matté C, Prediger ME, Wyse AT, Dalmaz C (2003) Reduction of hippocampal Na+, K+-ATPase activity in rats subjected to an experimental model of depression. Neurochem Res 28:1339–1344

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. F. Villa.

Ethics declarations

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Funding

The study was funded by the Italian Ministry for Education, University and Research (MIUR). Dr. F. Ferrari fellowship award was supported by Premio Anna Licia Giovanetti released for Ph.D. laureate students at the University of Pavia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, F., Villa, R.F. The Neurobiology of Depression: an Integrated Overview from Biological Theories to Clinical Evidence. Mol Neurobiol 54, 4847–4865 (2017). https://doi.org/10.1007/s12035-016-0032-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0032-y

Keywords

Navigation