Skip to main content
Log in

Hippocampus: Molecular, Cellular, and Circuit Features in Anxiety

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Anxiety disorders are currently a major psychiatric and social problem, the mechanisms of which have been only partially elucidated. The hippocampus serves as a major target of stress mediators and is closely related to anxiety modulation. Yet so far, its complex anatomy has been a challenge for research on the mechanisms of anxiety regulation. Recent advances in imaging, virus tracking, and optogenetics/chemogenetics have permitted elucidation of the activity, connectivity, and function of specific cell types within the hippocampus and its connected brain regions, providing mechanistic insights into the elaborate organization of the hippocampal circuitry underlying anxiety. Studies of hippocampal neurotransmitter systems, including glutamatergic, GABAergic, cholinergic, dopaminergic, and serotonergic systems, have contributed to the interpretation of the underlying neural mechanisms of anxiety. Neuropeptides and neuroinflammatory factors are also involved in anxiety modulation. This review comprehensively summarizes the hippocampal mechanisms associated with anxiety modulation, based on molecular, cellular, and circuit properties, to provide tailored targets for future anxiety treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fanselow MS, Dong HW. Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 2010, 65: 7–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T. Regional dissociations within the hippocampus—Memory and anxiety. Neurosci Biobehav Rev 2004, 28: 273–283.

    Article  CAS  PubMed  Google Scholar 

  3. Risold PY, Swanson LW. Structural evidence for functional domains in the rat hippocampus. Science 1996, 272: 1484–1486.

    Article  CAS  PubMed  Google Scholar 

  4. Knierim JJ. The hippocampus. Curr Biol 2015, 25: R1116–R1121.

    Article  CAS  PubMed  Google Scholar 

  5. Strange BA, Witter MP, Lein ES, Moser EI. Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci 2014, 15: 655–669.

    Article  CAS  PubMed  Google Scholar 

  6. Kjelstrup KG, Tuvnes FA, Steffenach HA, Murison R, Moser EI, Moser MB. Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci U S A 2002, 99: 10825–10830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Engin E, Treit D. The role of hippocampus in anxiety: Intracerebral infusion studies. Behav Pharmacol 2007, 18: 365–374.

    Article  CAS  PubMed  Google Scholar 

  8. Davis M, Walker DL, Miles L, Grillon C. Phasic vs sustained fear in rats and humans: Role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology 2010, 35: 105–135.

    Article  PubMed  Google Scholar 

  9. Crocq MA. A history of anxiety: From Hippocrates to DSM. Dialogues Clin Neurosci 2015, 17: 319–325.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Grupe DW, Nitschke JB. Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological perspective. Nat Rev Neurosci 2013, 14: 488–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Endler NS, Kocovski NL. State and trait anxiety revisited. J Anxiety Disord 2001, 15: 231–245.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang M, Ma C, Luo Y, Li J, Li Q, Liu Y, et al. Neural basis of uncertain cue processing in trait anxiety. Sci Rep 2016, 6: 21298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goes TC, Almeida Souza TH, Marchioro M, Teixeira-Silva F. Excitotoxic lesion of the medial prefrontal cortex in Wistar rats: Effects on trait and state anxiety. Brain Res Bull 2018, 142: 313–319.

    Article  PubMed  Google Scholar 

  14. Thibaut F. Anxiety disorders: A review of current literature. Dialogues Clin Neurosci 2017, 19: 87–88.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Beesdo K, Knappe S, Pine DS. Anxiety and anxiety disorders in children and adolescents: Developmental issues and implications for DSM-V. Psychiatr Clin North Am 2009, 32: 483–524.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Phillips AC, Carroll D, Der G. Negative life events and symptoms of depression and anxiety: Stress causation and/or stress generation. Anxiety Stress Coping 2015, 28: 357–371.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Murrough JW, Yaqubi S, Sayed S, Charney DS. Emerging drugs for the treatment of anxiety. Expert Opin Emerg Drugs 2015, 20: 393–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 1957, 20: 11–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Penfield W, Milner B. Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Arch Neurol Psychiatry 1958, 79: 475–497.

    Article  CAS  PubMed  Google Scholar 

  20. Burgess N, Maguire EA, O’Keefe J. The human hippocampus and spatial and episodic memory. Neuron 2002, 35: 625–641.

    Article  CAS  PubMed  Google Scholar 

  21. Phelps EA. Human emotion and memory: Interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol 2004, 14: 198–202.

    Article  CAS  PubMed  Google Scholar 

  22. Franklin TB, Saab BJ, Mansuy IM. Neural mechanisms of stress resilience and vulnerability. Neuron 2012, 75: 747–761.

    Article  CAS  PubMed  Google Scholar 

  23. Moscovitch M, Cabeza R, Winocur G, Nadel L. Episodic memory and beyond: The hippocampus and neocortex in transformation. Annu Rev Psychol 2016, 67: 105–134.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Squire LR, Stark CEL, Clark RE. The medial temporal lobe. Annu Rev Neurosci 2004, 27: 279–306.

    Article  CAS  PubMed  Google Scholar 

  25. Watson C, Paxinos G, Puelles L (2012) The Mouse Nervous System, Elsevier, Amsterdam, pp 783–795.

    Google Scholar 

  26. Schultz C, Engelhardt M. Anatomy of the hippocampal formation. Front Neurol Neurosci 2014, 34: 6–17.

    Article  PubMed  Google Scholar 

  27. Braak H, Braak E, Yilmazer D, Bohl J. Functional anatomy of human hippocampal formation and related structures. J Child Neurol 1996, 11: 265–275.

    Article  CAS  PubMed  Google Scholar 

  28. Tribolet NAR, Crossman D. Neary, Neuroanatomy. An illustrated colour text. Acta Neurochir 2009, 2010: 152.

    Google Scholar 

  29. Ayhan F, Kulkarni A, Berto S, Sivaprakasam K, Douglas C, Lega BC, et al. Resolving cellular and molecular diversity along the hippocampal anterior-to-posterior axis in humans. Neuron 2021, 109: 2091-2105.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jaeger BN, Linker SB, Parylak SL, Barron JJ, Gallina IS, Saavedra CD, et al. A novel environment-evoked transcriptional signature predicts reactivity in single dentate granule neurons. Nat Commun 2018, 9: 3084.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Volz F, Bock HH, Gierthmuehlen M, Zentner J, Haas CA, Freiman TM. Stereologic estimation of hippocampal GluR2/3- and calretinin-immunoreactive hilar neurons (presumptive mossy cells) in two mouse models of temporal lobe epilepsy. Epilepsia 2011, 52: 1579–1589.

    Article  CAS  PubMed  Google Scholar 

  32. Scharfman HE, Myers CE. Hilar mossy cells of the dentate gyrus: A historical perspective. Front Neural Circuits 2013, 6: 106.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cembrowski MS, Wang L, Sugino K, Shields BC, Spruston N. Hipposeq: A comprehensive RNA-seq database of gene expression in hippocampal principal neurons. eLife 2016, 5: e14997.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cembrowski MS, Wang L, Lemire AL, Copeland M, DiLisio SF, Clements J, et al. The subiculum is a patchwork of discrete subregions. eLife 2018, 7: e37701.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lein ES, Zhao X, Gage FH. Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. J Neurosci 2004, 24: 3879–3889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dudek SM, Alexander GM, Farris S. Rediscovering area CA2: Unique properties and functions. Nat Rev Neurosci 2016, 17: 89–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kohara K, Pignatelli M, Rivest AJ, Jung HY, Kitamura T, Suh J, et al. Cell type–specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nat Neurosci 2014, 17: 269–279.

    Article  CAS  PubMed  Google Scholar 

  38. Lee SE, Simons SB, Heldt SA, Zhao M, Schroeder JP, Vellano CP, et al. RGS14 is a natural suppressor of both synaptic plasticity in CA2 neurons and hippocampal-based learning and memory. Proc Natl Acad Sci U S A 2010, 107: 16994–16998.

    Article  CAS  PubMed  Google Scholar 

  39. Lein ES, Callaway EM, Albright TD, Gage FH. Redefining the boundaries of the hippocampal CA2 subfield in the mouse using gene expression and 3-dimensional reconstruction. J Comp Neurol 2005, 485: 1–10.

    Article  CAS  PubMed  Google Scholar 

  40. Shinohara Y, Hosoya A, Yahagi K, Ferecskó AS, Yaguchi K, Sík A, et al. Hippocampal CA3 and CA2 have distinct bilateral innervation patterns to CA1 in rodents. Eur J Neurosci 2012, 35: 702–710.

    Article  PubMed  Google Scholar 

  41. Basrai HS, Turbic A, Christie KJ, Turnley AM. Suppressor of cytokine signalling 2 (SOCS2) regulates numbers of mature newborn adult hippocampal neurons and their dendritic spine maturation. Cell Mol Neurobiol 2017, 37: 899–909.

    Article  CAS  PubMed  Google Scholar 

  42. Naber PA, LopesdaSilva FH, Witter MP. Reciprocal connections between the entorhinal cortex and hippocampal fields CA1 and the subiculum are in register with the projections from CA1 to the subiculum. Hippocampus 2001, 11: 99–104.

    Article  CAS  PubMed  Google Scholar 

  43. Witter MP, Griffioen AW, Jorritsma-Byham B, Krijnen JL. Entorhinal projections to the hippocampal CA1 region in the rat: An underestimated pathway. Neurosci Lett 1988, 85: 193–198.

    Article  CAS  PubMed  Google Scholar 

  44. O’Mara SM, Commins S, Anderson M, Gigg J. The subiculum: A review of form, physiology and function. Prog Neurobiol 2001, 64: 129–155.

    Article  CAS  PubMed  Google Scholar 

  45. van Groen T, Miettinen P, Kadish I. The entorhinal cortex of the mouse: Organization of the projection to the hippocampal formation. Hippocampus 2003, 13: 133–149.

    Article  PubMed  Google Scholar 

  46. Nakahara S, Matsumoto M, Ito H, Tajinda K. Ectopic mossy fiber pathfinding in the hippocampus caused the abnormal neuronal transmission in the mouse models of psychiatric disease. Biol Pharm Bull 2018, 41: 138–141.

    Article  CAS  PubMed  Google Scholar 

  47. Speed HE, Dobrunz LE. Developmental changes in short-term facilitation are opposite at temporoammonic synapses compared to Schaffer collateral synapses onto CA1 pyramidal cells. Hippocampus 2009, 19: 187–204.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Witter MP. Organization of the entorhinal-hippocampal system: A review of current anatomical data. Hippocampus 1993, 3 Spec No: 33–44.

  49. Tóth K, Freund TF. Calbindin D28k-containing nonpyramidal cells in the rat hippocampus: Their immunoreactivity for GABA and projection to the medial septum. Neuroscience 1992, 49: 793–805.

    Article  PubMed  Google Scholar 

  50. Amaral DG, Witter MP. The three-dimensional organization of the hippocampal formation: A review of anatomical data. Neuroscience 1989, 31: 571–591.

    Article  CAS  PubMed  Google Scholar 

  51. Eyre MD, Bartos M. Somatostatin-expressing interneurons form axonal projections to the contralateral hippocampus. Front Neural Circuits 2019, 13: 56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Scharfman HE. The enigmatic mossy cell of the dentate gyrus. Nat Rev Neurosci 2016, 17: 562–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun Y, Grieco SF, Holmes TC, Xu X. Local and long-range circuit connections to hilar mossy cells in the dentate gyrus. eNeuro 2017, 4: ENEURO.0097-ENEURO.0017.2017.

    Article  PubMed  Google Scholar 

  54. Queiroz CMT, Mello LE. Synaptic plasticity of the CA3 commissural projection in epileptic rats: An in vivo electrophysiological study. Eur J Neurosci 2007, 25: 3071–3079.

    Article  PubMed  Google Scholar 

  55. Zhou H, Xiong GJ, Jing L, Song NN, Pu DL, Tang X, et al. The interhemispheric CA1 circuit governs rapid generalisation but not fear memory. Nat Commun 2017, 8: 2190.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jackson MB, Scharfman HE. Positive feedback from hilar mossy cells to granule cells in the dentate gyrus revealed by voltage-sensitive dye and microelectrode recording. J Neurophysiol 1996, 76: 601–616.

    Article  CAS  PubMed  Google Scholar 

  57. Scharfman HE. The CA3 “backprojection” to the dentate gyrus. Prog Brain Res 2007, 163: 627–637.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rolls ET. An attractor network in the hippocampus: Theory and neurophysiology. Learn Mem 2007, 14: 714–731.

    Article  PubMed  Google Scholar 

  59. Lorente De Nó R. Studies on the structure of the cerebral cortex, II, Continuation of the study of the ammonic system. Journal für Psychologie und Neurologie 1934, 46: 113–177.

    Google Scholar 

  60. Tamamaki N, Abe K, Nojyo Y. Three-dimensional analysis of the whole axonal arbors originating from single CA2 pyramidal neurons in the rat hippocampus with the aid of a computer graphic technique. Brain Res 1988, 452: 255–272.

    Article  CAS  PubMed  Google Scholar 

  61. Ishizuka N, Weber J, Amaral DG. Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J Comp Neurol 1990, 295: 580–623.

    Article  CAS  PubMed  Google Scholar 

  62. Sik A, Ylinen A, Penttonen M, Buzsáki G. Inhibitory CA1-CA3-hilar region feedback in the hippocampus. Science 1994, 265: 1722–1724.

    Article  CAS  PubMed  Google Scholar 

  63. Steward O, Scoville SA. Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol 1976, 169: 347–370.

    Article  CAS  PubMed  Google Scholar 

  64. Hargreaves EL, Rao G, Lee I, Knierim JJ. Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science 2005, 308: 1792–1794.

    Article  CAS  PubMed  Google Scholar 

  65. Dang R, Zhou Y, Zhang Y, Liu D, Wu M, Liu A, et al. Regulation of social memory by lateral entorhinal cortical projection to dorsal hippocampal CA2. Neurosci Bull 2022, 38: 318–322.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lopez-Rojas J, de Solis CA, Leroy F, Kandel ER, Siegelbaum SA. A direct lateral entorhinal cortex to hippocampal CA2 circuit conveys social information required for social memory. Neuron 2022, 110: 1559-1572.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Agster KL, Burwell RD. Hippocampal and subicular efferents and afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. Behav Brain Res 2013, 254: 50–64.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tao S, Wang Y, Peng J, Zhao Y, He X, Yu X, et al. Whole-brain mapping the direct inputs of dorsal and ventral CA1 projection neurons. Front Neural Circuits 2021, 15: 643230.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Salib M, Joshi A, Katona L, Howarth M, Micklem BR, Somogyi P, et al. GABAergic medial septal neurons with low-rhythmic firing innervating the dentate gyrus and hippocampal area CA3. J Neurosci 2019, 39: 4527–4549.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Sans-Dublanc A, Razzauti A, Desikan S, Pascual M, Monyer H, Sindreu C. Septal GABAergic inputs to CA1 govern contextual memory retrieval. Sci Adv 2020, 6: eaba5003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Freund TF, Buzsáki G. Interneurons of the hippocampus. Hippocampus 1998, 6: 347–470.

    Article  Google Scholar 

  72. Pimpinella D, Mastrorilli V, Giorgi C, Coemans S, Lecca S, Lalive AL, et al. Septal cholinergic input to CA2 hippocampal region controls social novelty discrimination via nicotinic receptor-mediated disinhibition. eLife 2021, 10: e65580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Buzsáki G. Theta oscillations in the hippocampus. Neuron 2002, 33: 325–340.

    Article  PubMed  Google Scholar 

  74. Freund TF, Antal M. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 1988, 336: 170–173.

    Article  CAS  PubMed  Google Scholar 

  75. Sun Y, Nguyen AQ, Nguyen JP, Le L, Saur D, Choi J, et al. Cell-type-specific circuit connectivity of hippocampal CA1 revealed through cre-dependent rabies tracing. Cell Rep 2014, 7: 269–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bohne P, Schwarz MK, Herlitze S, Mark MD. A new projection from the deep cerebellar nuclei to the hippocampus via the ventrolateral and laterodorsal thalamus in mice. Front Neural Circuits 2019, 13: 51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Goswamee P, Leggett E, McQuiston AR. Nucleus reuniens afferents in hippocampus modulate CA1 network function via monosynaptic excitation and polysynaptic inhibition. Front Cell Neurosci 2021, 15: 660897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Felix-Ortiz AC, Beyeler A, Seo C, Leppla CA, Wildes CP, Tye KM. BLA to vHPC inputs modulate anxiety-related behaviors. Neuron 2013, 79: 658–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang Y, Wang ZH, Jin S, Gao D, Liu N, Chen SP, et al. Opposite monosynaptic scaling of BLP–vCA1 inputs governs hopefulness- and helplessness-modulated spatial learning and memory. Nat Commun 2016, 7: 11935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Amaral DG, Cowan WM. Subcortical afferents to the hippocampal formation in the monkey. J Comp Neurol 1980, 189: 573–591.

    Article  CAS  PubMed  Google Scholar 

  81. Oleskevich S, Descarries L, Lacaille JC. Quantified distribution of the noradrenaline innervation in the hippocampus of adult rat. J Neurosci 1989, 9: 3803–3815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Loy R, Koziell DA, Lindsey JD, Moore RY. Noradrenergic innervation of the adult rat hippocampal formation. J Comp Neurol 1980, 189: 699–710.

    Article  CAS  PubMed  Google Scholar 

  83. Gasbarri A, Sulli A, Packard MG. The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog Neuro Psychopharmacol Biol Psychiatry 1997, 21: 1–22.

    Article  CAS  Google Scholar 

  84. Swanson LW, Sawchenko PE, Cowan WM. Evidence that the commissural, associational and septal projections of the regio inferior of the hippocampus arise from the same neurons. Brain Res 1980, 197: 207–212.

    Article  CAS  PubMed  Google Scholar 

  85. Luchetti A, Bota A, Weitemier A, Mizuta K, Sato M, Islam T, et al. Two functionally distinct serotonergic projections into hippocampus. J Neurosci 2020, 40: 4936–4944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Aznar S, Qian ZX, Knudsen GM. Non-serotonergic dorsal and Median raphe projection onto parvalbumin- and calbindin-containing neurons in hippocampus and septum. Neuroscience 2004, 124: 573–581.

    Article  CAS  PubMed  Google Scholar 

  87. Kempadoo KA, Mosharov EV, Choi SJ, Sulzer D, Kandel ER. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc Natl Acad Sci U S A 2016, 113: 14835–14840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yuan M, Meyer T, Benkowitz C, Savanthrapadian S, Ansel-Bollepalli L, Foggetti A, et al. Somatostatin-positive interneurons in the dentate gyrus of mice provide local- and long-range septal synaptic inhibition. eLife 2017, 6: e21105.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Besnard A, Gao Y, Kim MT, Twarkowski H, Reed AK, Langberg T, et al. Dorsolateral septum somatostatin interneurons gate mobility to calibrate context-specific behavioral fear responses. Nat Neurosci 2019, 22: 436–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Leroy F, Park J, Asok A, Brann DH, Meira T, Boyle LM, et al. A circuit from hippocampal CA2 to lateral septum disinhibits social aggression. Nature 2018, 564: 213–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cenquizca LA, Swanson LW. Spatial organization of direct hippocampal field CA1 axonal projections to the rest of the cerebral cortex. Brain Res Rev 2007, 56: 1–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kloosterman F, Witter MP, Van Haeften T. Topographical and laminar organization of subicular projections to the parahippocampal region of the rat. J Comp Neurol 2003, 455: 156–171.

    Article  PubMed  Google Scholar 

  93. Witter MP. Connections of the subiculum of the rat: Topography in relation to columnar and laminar organization. Behav Brain Res 2006, 174: 251–264.

    Article  CAS  PubMed  Google Scholar 

  94. Witter MP, Naber PA, van Haeften T, Machielsen WC, Rombouts SA, Barkhof F, et al. Cortico-hippocampal communication by way of parallel parahippocampal-subicular pathways. Hippocampus 2000, 10: 398–410.

    Article  CAS  PubMed  Google Scholar 

  95. Fu JY, Yu XD, Zhu Y, Xie SZ, Tang MY, Yu B, et al. Whole-brain map of long-range monosynaptic inputs to different cell types in the amygdala of the mouse. Neurosci Bull 2020, 36: 1381–1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cole AB, Montgomery K, Bale TL, Thompson SM. What the hippocampus tells the HPA axis: Hippocampal output attenuates acute stress responses via disynaptic inhibition of CRF+ PVN neurons. Neurobiol Stress 2022, 20: 100473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Christiansen K, Dillingham CM, Wright NF, Saunders RC, Vann SD, Aggleton JP. Complementary subicular pathways to the anterior thalamic nuclei and mammillary bodies in the rat and macaque monkey brain. Eur J Neurosci 2016, 43: 1044–1061.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mikulovic S, Restrepo CE, Siwani S, Bauer P, Pupe S, Tort ABL, et al. Ventral hippocampal OLM cells control type 2 theta oscillations and response to predator odor. Nat Commun 2018, 9: 3638.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Xia F, Kheirbek MA. Circuit-based biomarkers for mood and anxiety disorders. Trends Neurosci 2020, 43: 902–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang C, Liu H, Li K, Wu ZZ, Wu C, Yu JY, et al. Tactile modulation of memory and anxiety requires dentate granule cells along the dorsoventral axis. Nat Commun 2020, 11: 6045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tovote P, Fadok JP, Lüthi A. Neuronal circuits for fear and anxiety. Nat Rev Neurosci 2015, 16: 317–331.

    Article  CAS  PubMed  Google Scholar 

  102. Kemp GM, Altimimi HF, Nho Y, Heir R, Klyczek A, Stellwagen D. Sustained TNF signaling is required for the synaptic and anxiety-like behavioral response to acute stress. Mol Psychiatry 2022, 27: 4474–4484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sun D, Milibari L, Pan JX, Ren X, Yao LL, Zhao Y, et al. Critical roles of embryonic born dorsal dentate granule neurons for activity-dependent increases in BDNF, adult hippocampal neurogenesis, and antianxiety-like behaviors. Biol Psychiatry 2021, 89: 600–614.

    Article  CAS  PubMed  Google Scholar 

  104. Günther A, Luczak V, Gruteser N, Abel T, Baumann A. HCN4 knockdown in dorsal hippocampus promotes anxiety-like behavior in mice. Genes Brain Behav 2019, 18: e12550.

    Article  PubMed  Google Scholar 

  105. Kim CS, Chang PY, Johnston D. Enhancement of dorsal hippocampal activity by knockdown of HCN1 channels leads to anxiolytic- and antidepressant-like behaviors. Neuron 2012, 75: 503–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 2001, 435: 406–417.

    Article  CAS  PubMed  Google Scholar 

  107. Song J, Olsen RHJ, Sun J, Ming GL, Song H. Neuronal circuitry mechanisms regulating adult mammalian neurogenesis. Cold Spring Harb Perspect Biol 2016, 8: a018937.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, et al. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 2018, 22: 589-599.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 2019, 25: 554–560.

    Article  PubMed  Google Scholar 

  110. Hill AS, Sahay A, Hen R. Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology 2015, 40: 2368–2378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Revest JM, Dupret D, Koehl M, Funk-Reiter C, Grosjean N, Piazza PV, et al. Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol Psychiatry 2009, 14: 959–967.

    Article  PubMed  Google Scholar 

  112. Anacker C, Luna VM, Stevens GS, Millette A, Shores R, Jimenez JC, et al. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature 2018, 559: 98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kheirbek MA, Drew LJ, Burghardt NS, Costantini DO, Tannenholz L, Ahmari SE, et al. Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron 2013, 77: 955–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zaletel I, Filipović D, Puškaš N. Chronic stress, hippocampus and parvalbumin-positive interneurons: What do we know so far? Rev Neurosci 2016, 27: 397–409.

    Article  PubMed  Google Scholar 

  115. Czéh B, Varga ZK, Henningsen K, Kovács GL, Miseta A, Wiborg O. Chronic stress reduces the number of GABAergic interneurons in the adult rat hippocampus, dorsal-ventral and region-specific differences. Hippocampus 2015, 25: 393–405.

    Article  PubMed  Google Scholar 

  116. Filipović D, Zlatković J, Gass P, Inta D. The differential effects of acute vs. chronic stress and their combination on hippocampal parvalbumin and inducible heat shock protein 70 expression. Neuroscience 2013, 236: 47–54.

    Article  PubMed  Google Scholar 

  117. Filipović D, Stanisavljević A, Jasnić N, Bernardi RE, Inta D, Perić I, et al. Chronic treatment with fluoxetine or clozapine of socially isolated rats prevents subsector-specific reduction of parvalbumin immunoreactive cells in the hippocampus. Neuroscience 2018, 371: 384–394.

    Article  PubMed  Google Scholar 

  118. Czeh B, Simon M, van der Hart MG, Schmelting B, Hesselink MB, Fuchs E. Chronic stress decreases the number of parvalbumin-immunoreactive interneurons in the hippocampus: Prevention by treatment with a substance P receptor (NK1) antagonist. Neuropsychopharmacology 2005, 30: 67–79.

    Article  CAS  PubMed  Google Scholar 

  119. Rossetti AC, Paladini MS, Colombo M, Gruca P, Lason-Tyburkiewicz M, Tota-Glowczyk K, et al. Chronic stress exposure reduces parvalbumin expression in the rat hippocampus through an imbalance of redox mechanisms: Restorative effect of the antipsychotic lurasidone. Int J Neuropsychopharmacol 2018, 21: 883–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zou D, Chen L, Deng D, Jiang D, Dong F, McSweeney C, et al. DREADD in parvalbumin interneurons of the dentate gyrus modulates anxiety, social interaction and memory extinction. Curr Mol Med 2016, 16: 91–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li H, Zhao J, Lai L, Xia Y, Wan C, Wei S, et al. Loss of SST and PV positive interneurons in the ventral hippocampus results in anxiety-like behavior in 5xFAD mice. Neurobiol Aging 2022, 117: 165–178.

    Article  PubMed  Google Scholar 

  122. Hu W, Zhang M, Czéh B, Flügge G, Zhang W. Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing neuronal network. Neuropsychopharmacology 2010, 35: 1693–1707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Murthy S, Kane GA, Katchur NJ, Lara Mejia PS, Obiofuma G, Buschman TJ, et al. Perineuronal nets, inhibitory interneurons, and anxiety-related ventral hippocampal neuronal oscillations are altered by early life adversity. Biol Psychiatry 2019, 85: 1011–1020.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Banasr M, Lepack A, Fee C, Duric V, Maldonado-Aviles J, DiLeone R, et al. Characterization of GABAergic marker expression in the chronic unpredictable stress model of depression. Chronic Stress (Thousand Oaks) 2017, 1: 2470547017720459.

    PubMed  Google Scholar 

  125. Giachino C, Canalia N, Capone F, Fasolo A, Alleva E, Riva MA, et al. Maternal deprivation and early handling affect density of calcium binding protein-containing neurons in selected brain regions and emotional behavior in periadolescent rats. Neuroscience 2007, 145: 568–578.

    Article  CAS  PubMed  Google Scholar 

  126. Heilig M, Zachrisson O, Thorsell A, Ehnvall A, Mottagui-Tabar S, Sjögren M, et al. Decreased cerebrospinal fluid neuropeptide Y (NPY) in patients with treatment refractory unipolar major depression: Preliminary evidence for association with preproNPY gene polymorphism. J Psychiatr Res 2004, 38: 113–121.

    Article  PubMed  Google Scholar 

  127. Sergeyev V, Fetissov S, Mathé AA, Jimenez PA, Bartfai T, Mortas P, et al. Neuropeptide expression in rats exposed to chronic mild stresses. Psychopharmacology 2005, 178: 115–124.

    Article  CAS  PubMed  Google Scholar 

  128. Sweerts BW, Jarrott B, Lawrence AJ. The effect of acute and chronic restraint on the central expression of prepro-neuropeptide Y mRNA in normotensive and hypertensive rats. J Neuroendocrinol 2001, 13: 608–617.

    Article  CAS  PubMed  Google Scholar 

  129. Alviña K, Farshbaf MJ, Mondal AK. Long term effects of stress on hippocampal function: Emphasis on early life stress paradigms and potential involvement of neuropeptide Y. J Neurosci Res 2021, 99: 57–66.

    Article  PubMed  Google Scholar 

  130. Li Q, Bartley AF, Dobrunz LE. Endogenously released neuropeptide Y suppresses hippocampal short-term facilitation and is impaired by stress-induced anxiety. J Neurosci 2017, 37: 23–37.

    Article  PubMed  PubMed Central  Google Scholar 

  131. LaGamma CT, Tang WW, Morgan AA, McGowan JC, Brachman RA, Denny CA. Antidepressant but not prophylactic ketamine administration alters calretinin and calbindin expression in the ventral hippocampus. Front Mol Neurosci 2018, 11: 404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fuchs T, Jefferson SJ, Hooper A, Yee PH, Maguire J, Luscher B. Disinhibition of somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-like brain state. Mol Psychiatry 2017, 22: 920–930.

    Article  CAS  PubMed  Google Scholar 

  133. Giardino L, Bettelli C, Pozza M, Calzà L. Regulation of CCK mRNA expression in the rat brain by stress and treatment with sertraline, a selective serotonin re-uptake inhibitor. Brain Res 1999, 824: 304–307.

    Article  CAS  PubMed  Google Scholar 

  134. Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H. Structure-stability-function relationships of dendritic spines. Trends Neurosci 2003, 26: 360–368.

    Article  CAS  PubMed  Google Scholar 

  135. Kitayama N, Vaccarino V, Kutner M, Weiss P, Bremner JD. Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: A meta-analysis. J Affect Disord 2005, 88: 79–86.

    Article  PubMed  Google Scholar 

  136. Schoenfeld TJ, McCausland HC, Morris HD, Padmanaban V, Cameron HA. Stress and loss of adult neurogenesis differentially reduce hippocampal volume. Biol Psychiatry 2017, 82: 914–923.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Rao U, Chen LA, Bidesi AS, Shad MU, Thomas MA, Hammen CL. Hippocampal changes associated with early-life adversity and vulnerability to depression. Biol Psychiatry 2010, 67: 357–364.

    Article  Google Scholar 

  138. van der Flier WM, Scheltens P. Hippocampal volume loss and Alzheimer disease progression. Nat Rev Neurol 2009, 5: 361–362.

    Article  PubMed  Google Scholar 

  139. Noorlander CW, Tijsseling D, Hessel EVS, de Vries WB, Derks JB, Visser GHA, et al. Antenatal glucocorticoid treatment affects hippocampal development in mice. PLoS One 2014, 9: e85671.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sousa N, Lukoyanov NV, Madeira MD, Almeida OF, Paula-Barbosa MM. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 2000, 97: 253–266.

    Article  CAS  PubMed  Google Scholar 

  141. McLaughlin KJ, Gomez JL, Baran SE, Conrad CD. The effects of chronic stress on hippocampal morphology and function: An evaluation of chronic restraint paradigms. Brain Res 2007, 1161: 56–64.

    Article  CAS  PubMed  Google Scholar 

  142. Orlowski D, Elfving B, Müller HK, Wegener G, Bjarkam CR. Wistar rats subjected to chronic restraint stress display increased hippocampal spine density paralleled by increased expression levels of synaptic scaffolding proteins. Stress 2012, 15: 514–523.

    Article  CAS  PubMed  Google Scholar 

  143. Vyas A, Mitra R, Rao BSS, Chattarji S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 2002, 22: 6810–6818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Christian KM, Miracle AD, Wellman CL, Nakazawa K. Chronic stress-induced hippocampal dendritic retraction requires CA3 NMDA receptors. Neuroscience 2011, 174: 26–36.

    Article  CAS  PubMed  Google Scholar 

  145. Papadakakis A, Sidiropoulou K, Panagis G. Music exposure attenuates anxiety- and depression-like behaviors and increases hippocampal spine density in male rats. Behav Brain Res 2019, 372: 112023.

    Article  CAS  PubMed  Google Scholar 

  146. Magariños AM, Li CJ, Gal Toth J, Bath KG, Jing D, Lee FS, et al. Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons. Hippocampus 2011, 21: 253–264.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Bennett MR, Lagopoulos J. Stress and trauma: BDNF control of dendritic-spine formation and regression. Prog Neurobiol 2014, 112: 80–99.

    Article  CAS  PubMed  Google Scholar 

  148. Lakshminarasimhan H, Chattarji S. Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala. PLoS One 2012, 7: e30481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. von Bohlen und Halbach O, von Bohlen und Halbach V. BDNF effects on dendritic spine morphology and hippocampal function. Cell Tissue Res 2018, 373: 729–741.

    Article  Google Scholar 

  150. Kumar A. Long-term potentiation at CA3-CA1 hippocampal synapses with special emphasis on aging, disease, and stress. Front Aging Neurosci 2011, 3: 7.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Pan E, Puranam RS, McNamara JO. Long-term potentiation of mossy fiber feedforward inhibition of CA3 pyramidal cells maintains E/I balance in epilepsy model. Neuro 2022, 9: ENEURO.0375-ENEURO.0321.2021.

    Google Scholar 

  152. Shin SY, Han SH, Woo RS, Jang SH, Min SS. Adolescent mice show anxiety- and aggressive-like behavior and the reduction of long-term potentiation in mossy fiber-CA3 synapses after neonatal maternal separation. Neuroscience 2016, 316: 221–231.

    Article  CAS  PubMed  Google Scholar 

  153. Zhang X, Wang B, Jin J, An S, Zeng Q, Duan Y, et al. Early deprivation reduced anxiety and enhanced memory in adult male rats. Brain Res Bull 2014, 108: 44–50.

    Article  PubMed  Google Scholar 

  154. Bhagya VR, Srikumar BN, Veena J, Shankaranarayana Rao BS. Short-term exposure to enriched environment rescues chronic stress-induced impaired hippocampal synaptic plasticity, anxiety, and memory deficits. J Neurosci Res 2017, 95: 1602–1610.

    Article  CAS  PubMed  Google Scholar 

  155. Neitz A, Mergia E, Imbrosci B, Petrasch-Parwez E, Eysel UT, Koesling D, et al. Postsynaptic NO/cGMP increases NMDA receptor currents via hyperpolarization-activated cyclic nucleotide-gated channels in the hippocampus. Cereb Cortex 2014, 24: 1923–1936.

    Article  Google Scholar 

  156. Cortese BM, Phan KL. The role of glutamate in anxiety and related disorders. CNS Spectr 2005, 10: 820–830.

    Article  PubMed  Google Scholar 

  157. Lydiard RB. The role of GABA in anxiety disorders. J Clin Psychiatry 2003, 64: 21–27.

    CAS  PubMed  Google Scholar 

  158. Rezvanfard M, Zarrindast MR, Bina P. Role of ventral hippocampal GABA(A) and NMDA receptors in the anxiolytic effect of carbamazepine in rats using the elevated plus maze test. Pharmacology 2009, 84: 356–366.

    Article  CAS  PubMed  Google Scholar 

  159. Zarrabian S, Farahizadeh M, Nasehi M, Zarrindast MR. The role of CA3 GABAA receptors on anxiolytic-like behaviors and avoidance memory deficit induced by NMDA receptor antagonists. J Psychopharmacol 2016, 30: 215–223.

    Article  CAS  PubMed  Google Scholar 

  160. Degroot A, Treit D. Dorsal and ventral hippocampal cholinergic systems modulate anxiety in the plus-maze and shock-probe tests. Brain Res 2002, 949: 60–70.

    Article  CAS  PubMed  Google Scholar 

  161. Mineur YS, Obayemi A, Wigestrand MB, Fote GM, Calarco CA, Li AM, et al. Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proc Natl Acad Sci U S A 2013, 110: 3573–3578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Köhler C, Ericson H, Radesäter AC. Different laminar distributions of dopamine D1 and D2 receptors in the rat hippocampal region. Neurosci Lett 1991, 126: 107–109.

    Article  PubMed  Google Scholar 

  163. Hasbi A, Nguyen T, Rahal H, Manduca JD, Miksys S, Tyndale RF, et al. Sex difference in dopamine D1–D2 receptor complex expression and signaling affects depression- and anxiety-like behaviors. Biol Sex Differ 2020, 11: 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zarrindast MR, Nasehi M, Pournaghshband M, Yekta BG. Dopaminergic system in CA1 modulates MK-801 induced anxiolytic-like responses. Pharmacol Biochem Behav 2012, 103: 102–110.

    Article  CAS  PubMed  Google Scholar 

  165. Zarrindast MR, Naghdi-Sedeh N, Nasehi M, Sahraei H, Bahrami F, Asadi F. The effects of dopaminergic drugs in the ventral hippocampus of rats in the nicotine-induced anxiogenic-like response. Neurosci Lett 2010, 475: 156–160.

    Article  CAS  PubMed  Google Scholar 

  166. Nasehi M, Mafi F, Oryan S, Nasri S, Zarrindast MR. The effects of dopaminergic drugs in the dorsal hippocampus of mice in the nicotine-induced anxiogenic-like response. Pharmacol Biochem Behav 2011, 98: 468–473.

    Article  CAS  PubMed  Google Scholar 

  167. Nasehi M, Kafi F, Zarrindast MR. Differential mechanisms of opioidergic and dopaminergic systems of the ventral hippocampus (CA3) in anxiolytic-like behaviors induced by cholestasis in mice. Eur J Pharmacol 2013, 714: 352–358.

    Article  CAS  PubMed  Google Scholar 

  168. Zhou QG, Zhu LJ, Chen C, Wu HY, Luo CX, Chang L, et al. Hippocampal neuronal nitric oxide synthase mediates the stress-related depressive behaviors of glucocorticoids by downregulating glucocorticoid receptor. J Neurosci 2011, 31: 7579–7590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhu LJ, Li TY, Luo CX, Jiang N, Chang L, Lin YH, et al. CAPON-nNOS coupling can serve as a target for developing new anxiolytics. Nat Med 2014, 20: 1050–1054.

    Article  CAS  PubMed  Google Scholar 

  170. Zhu LJ, Shi HJ, Chang L, Zhang CC, Si M, Li N, et al. nNOS-CAPON blockers produce anxiolytic effects by promoting synaptogenesis in chronic stress-induced animal models of anxiety. Br J Pharmacol 2020, 177: 3674–3690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tomiga Y, Sakai K, Ra SG, Kusano M, Ito A, Uehara Y, et al. Short-term running exercise alters DNA methylation patterns in neuronal nitric oxide synthase and brain-derived neurotrophic factor genes in the mouse hippocampus and reduces anxiety-like behaviors. FASEB J 2021, 35: e21767.

    Article  CAS  PubMed  Google Scholar 

  172. Dubreucq S, Matias I, Cardinal P, Häring M, Lutz B, Marsicano G, et al. Genetic dissection of the role of cannabinoid type-1 receptors in the emotional consequences of repeated social stress in mice. Neuropsychopharmacology 2012, 37: 1885–1900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhong P, Wang W, Pan B, Liu X, Zhang Z, Long JZ, et al. Monoacylglycerol lipase inhibition blocks chronic stress-induced depressive-like behaviors via activation of mTOR signaling. Neuropsychopharmacology 2014, 39: 1763–1776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lisboa SF, Borges AA, Nejo P, Fassini A, Guimarães FS, Resstel LB. Cannabinoid CB1 receptors in the dorsal hippocampus and prelimbic medial prefrontal cortex modulate anxiety-like behavior in rats: Additional evidence. Prog Neuro Psychopharmacol Biol Psychiatry 2015, 59: 76–83.

    Article  CAS  Google Scholar 

  175. Campos AC, Ferreira FR, Guimarães FS, Lemos JI. Facilitation of endocannabinoid effects in the ventral hippocampus modulates anxiety-like behaviors depending on previous stress experience. Neuroscience 2010, 167: 238–246.

    Article  CAS  PubMed  Google Scholar 

  176. Scarante FF, Vila-Verde C, Detoni VL, Ferreira-Junior NC, Guimarães FS, Campos AC. Cannabinoid modulation of the stressed hippocampus. Front Mol Neurosci 2017, 10: 411.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Rubino T, Guidali C, Vigano D, Realini N, Valenti M, Massi P, et al. CB1 receptor stimulation in specific brain areas differently modulate anxiety-related behaviour. Neuropharmacology 2008, 54: 151–160.

    Article  CAS  PubMed  Google Scholar 

  178. Hu XF, Zhang H, Yu LL, Ge WQ, Zhan-Mu OY, Li YZ, et al. Electroacupuncture reduces anxiety associated with inflammatory bowel disease by acting on cannabinoid CB1 receptors in the ventral hippocampus in mice. Front Pharmacol 2022, 13: 919553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhuang M, Lai Q, Yang C, Ma Y, Fan B, Bian Z, et al. Spexin as an anxiety regulator in mouse hippocampus: Mechanisms for transcriptional regulation of spexin gene expression by corticotropin releasing factor. Biochem Biophys Res Commun 2020, 525: 326–333.

    Article  CAS  PubMed  Google Scholar 

  180. Philbert J, Pichat P, Palme R, Belzung C, Griebel G. The CRF1 receptor antagonist SSR125543 attenuates long-term cognitive deficit induced by acute inescapable stress in mice, independently from the hypothalamic pituitary adrenal axis. Pharmacol Biochem Behav 2012, 102: 415–422.

    Article  CAS  PubMed  Google Scholar 

  181. Chen Y, Brunson KL, Müller MB, Cariaga W, Baram TZ. Immunocytochemical distribution of corticotropin-releasing hormone receptor type-1 (CRF(1))-like immunoreactivity in the mouse brain: Light microscopy analysis using an antibody directed against the C-terminus. J Comp Neurol 2000, 420: 305–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kozlovsky N, Zohar J, Kaplan Z, Cohen H. Microinfusion of a corticotrophin-releasing hormone receptor 1 antisense oligodeoxynucleotide into the dorsal hippocampus attenuates stress responses at specific times after stress exposure. J Neuroendocrinol 2012, 24: 489–503.

    Article  CAS  PubMed  Google Scholar 

  183. Bertagna NB, dos Santos PGC, Queiroz RM, Fernandes GJD, Cruz FC, Miguel TT. Involvement of the ventral, but not dorsal, hippocampus in anxiety-like behaviors in mice exposed to the elevated plus maze: Participation of CRF1 receptor and PKA pathway. Pharmacol Rep 2021, 73: 57–72.

    Article  CAS  PubMed  Google Scholar 

  184. Dine J, Ionescu IA, Stepan J, Yen YC, Holsboer F, Landgraf R, et al. Identification of a role for the ventral hippocampus in neuropeptide S-elicited anxiolysis. PLoS One 2013, 8: e60219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ionescu IA, Dine J, Yen YC, Buell DR, Herrmann L, Holsboer F, et al. Intranasally administered neuropeptide S (NPS) exerts anxiolytic effects following internalization into NPS receptor-expressing neurons. Neuropsychopharmacology 2012, 37: 1323–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Dine J, Ionescu IA, Avrabos C, Yen YC, Holsboer F, Landgraf R, et al. Intranasally applied neuropeptide S shifts a high-anxiety electrophysiological endophenotype in the ventral hippocampus towards a normal-anxiety one. PLoS One 2015, 10: e0120272.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Rytova V, Ganella DE, Hawkes D, Bathgate RAD, Ma S, Gundlach AL. Chronic activation of the relaxin-3 receptor on GABA neurons in rat ventral hippocampus promotes anxiety and social avoidance. Hippocampus 2019, 29: 905–920.

    Article  CAS  PubMed  Google Scholar 

  188. Engin E, Stellbrink J, Treit D, Dickson CT. Anxiolytic and antidepressant effects of intracerebroventricularly administered somatostatin: Behavioral and neurophysiological evidence. Neuroscience 2008, 157: 666–676.

    Article  CAS  PubMed  Google Scholar 

  189. Li M, Li C, Yu H, Cai X, Shen X, Sun X, et al. Lentivirus-mediated interleukin-1β (IL-1β) knock-down in the hippocampus alleviates lipopolysaccharide (LPS)-induced memory deficits and anxiety- and depression-like behaviors in mice. J Neuroinflammation 2017, 14: 190.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Rodríguez-Seoane C, Ramos A, Korth C, Requena JR. DISC1 regulates expression of the neurotrophin VGF through the PI3K/AKT/CREB pathway. J Neurochem 2015, 135: 598–605.

    Article  PubMed  Google Scholar 

  191. Guo J, Lin P, Zhao X, Zhang J, Wei X, Wang Q, et al. Etazolate abrogates the lipopolysaccharide (LPS)-induced downregulation of the cAMP/pCREB/BDNF signaling, neuroinflammatory response and depressive-like behavior in mice. Neuroscience 2014, 263: 1–14.

    Article  CAS  PubMed  Google Scholar 

  192. Komleva YK, Lopatina OL, Gorina IV, Shuvaev AN, Chernykh A, Potapenko IV, et al. NLRP3 deficiency-induced hippocampal dysfunction and anxiety-like behavior in mice. Brain Res 2021, 1752: 147220.

    Article  CAS  PubMed  Google Scholar 

  193. Xu Y, Sheng H, Bao Q, Wang Y, Lu J, Ni X. NLRP3 inflammasome activation mediates estrogen deficiency-induced depression- and anxiety-like behavior and hippocampal inflammation in mice. Brain Behav Immun 2016, 56: 175–186.

    Article  CAS  PubMed  Google Scholar 

  194. Wang YL, Han QQ, Gong WQ, Pan DH, Wang LZ, Hu W, et al. Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats. J Neuroinflammation 2018, 15: 21.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Wheeler DW, White CM, Rees CL, Komendantov AO, Hamilton DJ, Ascoli GA. Hippocampome.org: A knowledge base of neuron types in the rodent hippocampus. Life 2015, 4: e09960.

    Google Scholar 

  196. Calhoon GG, Tye KM. Resolving the neural circuits of anxiety. Nat Neurosci 2015, 18: 1394–1404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Avital A, Ram E, Maayan R, Weizman A, Richter-Levin G. Effects of early-life stress on behavior and neurosteroid levels in the rat hypothalamus and entorhinal cortex. Brain Res Bull 2006, 68: 419–424.

    Article  CAS  PubMed  Google Scholar 

  198. Lu J, Zhang Z, Yin X, Tang Y, Ji R, Chen H, et al. An entorhinal-visual cortical circuit regulates depression-like behaviors. Mol Psychiatry 2022, 27: 3807–3820.

    Article  CAS  PubMed  Google Scholar 

  199. Davidson RJ. Anxiety and affective style: Role of prefrontal cortex and amygdala. Biol Psychiatry 2002, 51: 68–80.

    Article  PubMed  Google Scholar 

  200. Tye KM, Prakash R, Kim SY, Fenno LE, Grosenick L, Zarabi H, et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 2011, 471: 358–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Novaes LS, Dos Santos NB, Batalhote RFP, Malta MB, Camarini R, Scavone C, et al. Environmental enrichment protects against stress-induced anxiety: Role of glucocorticoid receptor, ERK, and CREB signaling in the basolateral amygdala. Neuropharmacology 2017, 113: 457–466.

    Article  CAS  PubMed  Google Scholar 

  202. Pikkarainen M, Rönkkö S, Savander V, Insausti R, Pitkänen A. Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J Comp Neurol 1999, 403: 229–260.

    Article  CAS  PubMed  Google Scholar 

  203. Pitkänen A, Pikkarainen M, Nurminen N, Ylinen A. Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann N Y Acad Sci 2000, 911: 369–391.

    Article  PubMed  Google Scholar 

  204. Pi G, Gao D, Wu D, Wang Y, Lei H, Zeng W, et al. Posterior basolateral amygdala to ventral hippocampal CA1 drives approach behaviour to exert an anxiolytic effect. Nat Commun 2020, 11: 183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Zhang JY, Liu TH, He Y, Pan HQ, Zhang WH, Yin XP, et al. Chronic stress remodels synapses in an amygdala circuit-specific manner. Biol Psychiatry 2019, 85: 189–201.

    Article  CAS  PubMed  Google Scholar 

  206. Jacobs BL, Azmitia EC. Structure and function of the brain serotonin system. Physiol Rev 1992, 72: 165–229.

    Article  CAS  PubMed  Google Scholar 

  207. Berumen LC, Rodríguez A, Miledi R, García-Alcocer G. Serotonin receptors in hippocampus. Sci World J 2012, 2012: 823493.

    Article  Google Scholar 

  208. Rex A, Voigt JP, Fink H. Anxiety but not arousal increases 5-hydroxytryptamine release in the rat ventral hippocampus in vivo. Eur J Neurosci 2005, 22: 1185–1189.

    Article  CAS  PubMed  Google Scholar 

  209. Ohmura Y, Tsutsui-Kimura I, Sasamori H, Nebuka M, Nishitani N, Tanaka KF, et al. Different roles of distinct serotonergic pathways in anxiety-like behavior, antidepressant-like, and anti-impulsive effects. Neuropharmacology 2020, 167: 107703.

    Article  CAS  PubMed  Google Scholar 

  210. Ohmura Y, Tanaka KF, Tsunematsu T, Yamanaka A, Yoshioka M. Optogenetic activation of serotonergic neurons enhances anxiety-like behaviour in mice. Int J Neuropsychopharmacol 2014, 17: 1777–1783.

    Article  CAS  PubMed  Google Scholar 

  211. Abela AR, Browne CJ, Sargin D, Prevot TD, Ji XD, Li Z, et al. Median raphe serotonin neurons promote anxiety-like behavior via inputs to the dorsal hippocampus. Neuropharmacology 2020, 168: 107985.

    Article  CAS  Google Scholar 

  212. dos Santos L, de Andrade TG, Zangrossi Junior H. 5-HT1A receptors in the dorsal hippocampus mediate the anxiogenic effect induced by the stimulation of 5-HT neurons in the Median raphe nucleus. Eur Neuropsychopharmacol 2008, 18: 286–294.

    Article  PubMed  Google Scholar 

  213. Adhikari A, Topiwala MA, Gordon JA. Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 2010, 65: 257–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Padilla-Coreano N, Canetta S, Mikofsky RM, Alway E, Passecker J, Myroshnychenko MV, et al. Hippocampal-prefrontal Theta transmission regulates avoidance behavior. Neuron 2019, 104: 601-610.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Adhikari A, Topiwala MA, Gordon JA. Single units in the medial prefrontal cortex with anxiety-related firing patterns are preferentially influenced by ventral hippocampal activity. Neuron 2011, 71: 898–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Padilla-Coreano N, Bolkan SS, Pierce GM, Blackman DR, Hardin WD, Garcia-Garcia AL, et al. Direct ventral hippocampal-prefrontal input is required for anxiety-related neural activity and behavior. Neuron 2016, 89: 857–866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Lee AT, Cunniff MM, See JZ, Wilke SA, Luongo FJ, Ellwood IT, et al. VIP interneurons contribute to avoidance behavior by regulating information flow across hippocampal-prefrontal networks. Neuron 2019, 102: 1223-1234.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Parfitt GM, Nguyen R, Bang JY, Aqrabawi AJ, Tran MM, Seo DK, et al. Bidirectional control of anxiety-related behaviors in mice: Role of inputs arising from the ventral hippocampus to the lateral septum and medial prefrontal cortex. Neuropsychopharmacology 2017, 42: 1715–1728.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Zarrindast MR, Valizadegan F, Rostami P, Rezayof A. Histaminergic system of the lateral septum in the modulation of anxiety-like behaviour in rats. Eur J Pharmacol 2008, 583: 108–114.

    Article  CAS  PubMed  Google Scholar 

  220. Troyano-Rodriguez E, Wirsig-Wiechmann CR, Ahmad M. Neuroligin-2 determines inhibitory synaptic transmission in the lateral septum to optimize stress-induced neuronal activation and avoidance behavior. Biol Psychiatry 2019, 85: 1046–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Trent NL, Menard JL. The ventral hippocampus and the lateral septum work in tandem to regulate rats’ open-arm exploration in the elevated plus-maze. Physiol Behav 2010, 101: 141–152.

    Article  CAS  PubMed  Google Scholar 

  222. Glangetas C, Massi L, Fois GR, Jalabert M, Girard D, Diana M, et al. NMDA-receptor-dependent plasticity in the bed nucleus of the stria terminalis triggers long-term anxiolysis. Nat Commun 2017, 8: 14456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Jimenez JC, Su K, Goldberg AR, Luna VM, Biane JS, Ordek G, et al. Anxiety cells in a hippocampal-hypothalamic circuit. Neuron 2018, 97: 670-683.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Lesting J, Narayanan RT, Kluge C, Sangha S, Seidenbecher T, Pape HC. Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction. PLoS One 2011, 6: e21714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Kim WB, Cho JH. Synaptic targeting of double-projecting ventral CA1 hippocampal neurons to the medial prefrontal cortex and basal amygdala. J Neurosci 2017, 37: 4868–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review was supported by the National Natural Science Foundation of China (31970951), the Six Talent Peaks Project of Jiangsu Province (YY-005), the Shanghai Rising-Star Program (21QA1407900), and “Zhong Ying Young Scholar” project of Cyrus Tang Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Juan Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, HJ., Wang, S., Wang, XP. et al. Hippocampus: Molecular, Cellular, and Circuit Features in Anxiety. Neurosci. Bull. 39, 1009–1026 (2023). https://doi.org/10.1007/s12264-023-01020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-023-01020-1

Keywords

Navigation