Skip to main content
Log in

Expression and Characterization of a Novel Enantioselective Lipase from Aspergillus fumigatus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A 1,080-bp cDNA (CGMCC 2873) encoding of a cold-active lipase of Aspergillus fumigatus (AFL67) was cloned and expressed in Escherichia coli for the first time. The new lipase, AFL67, was one-step purified by 8.30 folds through Ni–NTA affinity chromatography with a recovery of 86.8 %. The specific activity of purified AFL67 was 449 U mg−1 on p-NP hexanoate. AFL67 preferentially hydrolyzed p-nitrophenyl esters of short- and medium-chain fatty acids, with p-nitrophenyl hexanoate the maximum. The optimum temperature and pH was 15 °C and 7.5, respectively. The purified AFL67 was stable at 10–25 °C for 30 min, and in the pH range of 6.0–9.0 for 16 h (at 4 °C). Its activity was increased by 47 and 50 %, in the presence of 10 % (v/v) ethanol and isopropanol, respectively. The new lipase AFL67 highly enantioselectively deacylated (S)-α-acetoxyphenylacetic acid (APA) and o-Cl-APA, m-Cl-APA, and p-Cl-APA to (S)-mandelic acid and its derivates. These features render this cold-active novel lipase AFL67 attractive for biotechnological applications in the field of enantioselective synthesis of chiral mandelic acids, o-acylated mandelic acids, and their derivates and detergent additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6

Similar content being viewed by others

References

  1. Linhart, I. (2001). Stereochemistry of styrene biotransformation. Drug Metabolism Reviews, 33, 353–367.

    Article  CAS  Google Scholar 

  2. Reetz, M. T. (2002). Lipases as practical biocatalysts. Current Opinion in Chemical Biology, 6, 145–150.

    Article  CAS  Google Scholar 

  3. Santaniello, E., Ferraboschi, P., Grisenti, P., & Manzocchi, A. (1992). The biocatalytic approach to the preparation of enantiomerically pure chiral building blocks. Chemical Reviews, 92, 1071–1140.

    Article  CAS  Google Scholar 

  4. Utkin, I. B., Yakimov, M. M., Matveeva, L. N., et al. (1991). Degradation of styrene and ethylbenzene by Pseudomonas species Y2. FEMS Microbiology Letters, 77, 237–241.

    Article  CAS  Google Scholar 

  5. Ghanem, A., Aboul-Enein, M. N., El-Azzouny, A., & El-Behairy, M. F. (2010). Lipase-mediated enantioselective kinetic resolution of racemic acidic drugs in non-standard organic solvents: direct chiral liquid chromatography monitoring and accurate determination of the enantiomeric excesses. Journal of Chromatography. A, 1217, 1063–1074.

    Article  CAS  Google Scholar 

  6. Blay, G., Fernandez, I., Molina, E., et al. (2006). Diastereoselective Michael addition of (S)-mandelic acid enolate to 2-arylidene-1,3-diketones: enantioselective diversity-oriented synthesis of densely substituted pyrazoles. Tetrahedron, 62, 8069–8076.

    Article  CAS  Google Scholar 

  7. Mateo, C., Chmura, A., Rustler, S., et al. (2006). Synthesis of enantiomerically pure (S)-mandelic acid using an oxynitrilase-nitrilase bienzymatic cascade: a nitrilase surprisingly shows nitrile hydratase activity. Tetrahedron-Asymmetry, 17, 320–323.

    Article  CAS  Google Scholar 

  8. Ema, T., Ide, S., Okita, N., & Sakai, T. (2008). Highly efficient chemoenzymatic synthesis of methyl (R)-o-chloromandelate, a key intermediate for clopidogrel, via asymmetric reduction with recombinant Escherichia coli. Advanced Synthesis and Catalysis, 350, 2039–2044.

    Article  CAS  Google Scholar 

  9. Grimley, J. (2006). Pharma challenged. Chemical & Engineering News, 84, 17–28.

    Article  Google Scholar 

  10. Wang, P. Y., Tsai, S. W., & Chen, T. L. (2008). Improvements of enzyme activity and enantioselectivity via combined substrate engineering and covalent immobilization. Biotechnology and Bioengineering, 101, 460–469.

    Article  CAS  Google Scholar 

  11. Kim, E. K., Jang, W. H., Ko, J. H., et al. (2001). Lipase and its modulator from Pseudomonas sp strain KFCC 10818: proline-to-glutamine substitution at position 112 induces formation of enzymatically active lipase in the absence of the modulator. Journal of Bacteriology, 183, 5937–5941.

    Article  CAS  Google Scholar 

  12. Gill, I. I., Das, J., & Patel, R. N. (2007). Enantioselective enzymatic acylation of 1-(3 ′-bromophenyl)ethylamine. Tetrahedron-Asymmetry, 18, 1330–1337.

    Article  CAS  Google Scholar 

  13. Ismail, H., Lau, R. M., van Rantwijk, F., & Sheldon, R. A. (2008). Fully enzymatic resolution of chiral amines: acylation and deacylation in the presence of Candida antarctica lipase B. Advanced Synthesis and Catalysis, 350, 1511–1516.

    Article  CAS  Google Scholar 

  14. Pilissao, C., Carvalho, P. D., & Nascimento, M. D. (2009). Enantioselective acylation of (RS)-phenylethylamine catalysed by lipases. Process Biochemistry, 44, 1352–1357.

    Article  CAS  Google Scholar 

  15. Wang, Y. H., Li, Q. S., Zhang, Z. M., Ma, J. T., & Feng, Y. (2009). Solvent effects on the enantioselectivity of the thermophilic lipase QLM in the resolution of (R, S)-2-octanol and (R, S)-2-pentanol. Journal of Molecular Catalysis B: Enzymatic, 56, 146–150.

    Article  CAS  Google Scholar 

  16. Ghanem, A., & Aboul-Enein, H. Y. (2005). Application of lipases in kinetic resolution of racemates. Chirality, 17, 1–15.

    Article  CAS  Google Scholar 

  17. Cabrera, Z., Fernandez-Lorente, G., Fernandez-Lafuente, R., Palomo, J. M., & Guisan, J. M. (2009). Enhancement of Novozym-435 catalytic properties by physical or chemical modification. Process Biochemistry, 44, 226–231.

    Article  CAS  Google Scholar 

  18. Volpato, G., Filice, M., Rodrigues, R. C., et al. (2009). Modulation of a lipase from Staphylococcus warneri EX17 using immobilization techniques. Journal of Molecular Catalysis B: Enzymatic, 60, 125–132.

    Article  CAS  Google Scholar 

  19. Ju, X., Yu, H.-L., Pan, J., Wei, D.-Z., & Xu, J.-H. (2009). Bioproduction of chiral mandelate by enantioselective deacylation of α-acetoxyphenylacetic acid using whole cells of newly isolated Pseudomonas sp. ECU1011. Applied Microbiology and Biotechnology, 86, 83–91.

    Article  Google Scholar 

  20. Mhetras, N., Bastawde, K., & Gokhale, D. (2009). Purification and characterization of acidic lipase from Aspergillus niger NCIM 1207. Bioresource Technology, 100, 1486–1490.

    Article  CAS  Google Scholar 

  21. Rajan, A., Kumar, D. R. S., & Nair, A. J. (2011). Isolation of a novel alkaline lipase producing fungus Aspergillus fumigatus MTCC 9657 from aged and crude rice bran oil and quantification by HPTLC. International Journal of Biological Chemistry, 5, 116–126.

    Article  CAS  Google Scholar 

  22. Shi, B. L., Zeng, L. Q., Song, H. L., et al. (2010). Cloning and expression of Aspergillus tamarii FS132 lipase gene in Pichia pastoris. International Journal of Molecular Sciences, 11, 2373–2382.

    Article  CAS  Google Scholar 

  23. Nishikawa, M., Gomi, H., & Kishimoto, F. (1993). Purification and some properties of carboxyl esterase from a Arthrobacter globiformis: stereoselective hydrolysis of ethyl chrysanthemate. Bioscience, Biotechnology, and Biochemistry, 57, 594–598.

    Article  Google Scholar 

  24. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  25. Wang, Y., Zhao, J., Xu, J.-H., et al. (2010). Significantly improved expression and biochemical properties of recombinant Serratia marcescens lipase as robust biocatalyst for kinetic resolution of chiral ester. Applied Biochemistry and Biotechnology, 162, 2387–2399.

    Article  CAS  Google Scholar 

  26. Becker, P., Abu-Reesh, I., Markossian, S., Antranikian, G., & Markl, H. (1997). Determination of the kinetic parameters during continuous cultivation of the lipase-producing thermophile Bacillus sp. IHI-91 on olive oil. Applied Microbiology and Biotechnology, 48, 184–190.

    Article  CAS  Google Scholar 

  27. Contesini, F. J., Lopes, D. B., Macedo, G. A., Nascimento, M. D. G., & Carvalho, P. D. O. (2010). Aspergillus sp. lipase: potential biocatalyst for industrial use. Journal of Molecular Catalysis B: Enzymatic, 67, 163–171.

    Article  CAS  Google Scholar 

  28. de Oliveira Carvalho, P., Contesini, F., Bizaco, R., & Alves Macedo, G. (2005). Kinetic properties and enantioselectivity of the lipases produced by four Aspergillus species. Food Biotechnology, 19, 183–192.

    Article  Google Scholar 

  29. Gupta, R., Gupta, N., & Rathi, P. (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64, 763–781.

    Article  CAS  Google Scholar 

  30. Zheng, X., Chu, X., Zhang, W., Wu, N., & Fan, Y. (2011). A novel cold-adapted lipase from Acinetobacter sp. XMZ-26: gene cloning and characterisation. Applied Microbiology and Biotechnology, 90, 971–980.

    Article  CAS  Google Scholar 

  31. Hiol, A., Jonzo, M. D., Rugani, N., et al. (2000). Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit. Enzyme and Microbial Technology, 26, 421–430.

    Article  CAS  Google Scholar 

  32. Zhang, A., Gao, R., Diao, N., et al. (2009). Cloning, expression and characterization of an organic solvent tolerant lipase from Pseudomonas fluorescens JCM5963. Journal of Molecular Catalysis B: Enzymatic, 56, 78–84.

    Article  CAS  Google Scholar 

  33. Cabrera, Z., Fernandez-Lorente, G., Fernandez-Lafuente, R., Palomo, J. M., & Guisan, J. M. (2009). Novozym 435 displays very different selectivity compared to lipase from Candida antarctica B adsorbed on other hydrophobic supports. Journal of Molecular Catalysis B: Enzymatic, 57, 171–176.

    Article  CAS  Google Scholar 

  34. Palomo, J. M., Fernandez-Lorente, G., Mateo, C., et al. (2002). Modulation of the enantioselectivity of lipases via controlled immobilization and medium engineering: hydrolytic resolution of mandelic acid esters. Enzyme and Microbial Technology, 31, 775–783.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by China National Special Fund for State Key Laboratory of Bioreactor Engineering (no. 2060204) and Shanghai Leading Academic Discipline Project (no. B505).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Zhao or Jian-He Xu.

Additional information

Jiao-Jiao Shangguan and Li-qiang Fan contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shangguan, JJ., Fan, Lq., Ju, X. et al. Expression and Characterization of a Novel Enantioselective Lipase from Aspergillus fumigatus . Appl Biochem Biotechnol 168, 1820–1833 (2012). https://doi.org/10.1007/s12010-012-9899-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9899-x

Keywords

Navigation