Skip to main content

Advertisement

Log in

Purification and Characterization of Enterocin LR/6, a Bacteriocin from Enterococcus faecium LR/6

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Enterocin LR/6, a bacteriocin obtained from the culture filtrate of Enterococcus faecium strain LR/6, has been purified to homogeneity using ammonium sulfate precipitation, cation-exchange chromatography, gel-filtration, and checked on reverse-phase high-performance liquid chromatography. It is active at high temperatures (boiling as well as autoclaving) and over a wide range of pH (2.0–8.0). Also, it is sensitive to a number of proteolytic enzymes but is stable in the presence of surfactants and organic solvents. The protein could be stored at least up to 1 year at low temperatures (4 °C and −20 °C) without any loss of activity. The N-terminal sequence of enterocin LR/6 showed no homology with known enterocins or other bacteriocins present in the database, suggesting it to be a novel enterocin. Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry and tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed its mass to be ∼6.1 kDa. It showed a bactericidal mode of action against indicator strain, Micrococcus luteus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen, H., & Hoover, D. G. (2003). Comprehensive Review of Food Science and Food Safety, 2, 82–100.

    CAS  Google Scholar 

  2. De Vuyst, L., & Vandamme, E. J. (1994). In L. De Vuyst, & E. J. Vandamme (Eds.), Bacteriocins of lactic acid bacteria, microbiology, genetics and applications (pp. 91–142). London: Blackie Academic & Professional.

    Google Scholar 

  3. Aymerich, T., Garriga, M., Ylla, J., Vallier, J., Monfort, J. M., & Hugas, M. (2000). Journal of Food Protection, 63, 721–726.

    CAS  Google Scholar 

  4. Moreno, M. R. F., Callewaert, R., Devreese, B., Van Beeumen, J., & De Vuyst, L. (2003). Journal of Applied Microbiology, 94, 214–229. doi:10.1046/j.1365-2672.2003.01823.x.

    Article  Google Scholar 

  5. Cintas, L. M., Casaus, P., Fernández, M. F., & Hernández, P. E. (1998). Food Microbiology, 15, 289–298. doi:10.1006/fmic.1997.0160.

    Article  CAS  Google Scholar 

  6. Ogunbanwo, S. T., Sanni, A. I., & Onilude, A. A. (2003). African Journal of Biotechnology, 2, 219–227.

    CAS  Google Scholar 

  7. Klaenhammer, T. R. (1993). FEMS Microbiology Reviews, 12, 39–85.

    CAS  Google Scholar 

  8. Nes, I. F., Bao Diep, D., Havarstein, L. S., Brurberg, M. B., Eijsink, V., & Holo, H. (1996). Antonie Van Leeuwenhoek, 70, 113–128. doi:10.1007/BF00395929.

    Article  CAS  Google Scholar 

  9. De Vuyst, L., Foulquie Moreno, M. R., & Revets, H. (2003). International Journal of Food Microbiology, 84, 299–318. doi:10.1016/S0168-1605(02)00425-7.

    Article  Google Scholar 

  10. Leroy, F., & De Vuyst, L. (2002). International Journal of Food Microbiology, 72, 155–164. doi:10.1016/S0168-1605(01)00635-3.

    Article  CAS  Google Scholar 

  11. Pantev, A., Valcheva, R., Danova, S., Ivanova, I., Minkov, I., Haertle, T., et al. (2003). International Journal of Food Microbiology, 80, 145–152. doi:10.1016/S0168-1605(02)00143-5.

    Article  CAS  Google Scholar 

  12. Audisio, M. C., Oliver, G., & Apella, M. C. (2000). Journal of Food Protection, 63, 1333–1337.

    Google Scholar 

  13. Tiwari, S. K., & Srivastava, S. (2008). Food Biotechnology, 22, 64–77. doi:10.1080/08905430701864009.

    Article  CAS  Google Scholar 

  14. Holo, H., Nilssen, T., & Nes, I. F. (1991). Journal of Bacteriology, 173, 3879–3887.

    CAS  Google Scholar 

  15. Schägger, H., & Von Jagow, G. (1987). Analytical Biochemistry, 166, 368–379. doi:10.1016/0003-2697(87)90587-2.

    Article  Google Scholar 

  16. Bhunia, A. K., Johnson, M. C., & Ray, B. (1987). Journal of Industrial Microbiology, 2, 319–322. doi:10.1007/BF01569434.

    Article  CAS  Google Scholar 

  17. De Vuyst, L., Callewart, R., & Pot, B. (1996). Systematic and Applied Microbiology, 19, 9–20.

    Google Scholar 

  18. Giraffa, G. (2003). International Journal of Food Microbiology, 88, 215–222. doi:10.1016/S0168-1605(03)00183-1.

    Article  CAS  Google Scholar 

  19. Hugas, M., Garriga, M., & Aymerich, M. T. (2003). International Journal of Food Microbiology, 88, 223–233. doi:10.1016/S0168-1605(03)00184-3.

    Article  CAS  Google Scholar 

  20. Foulquie Moreno, M. R., Sarantinopoulos, P., Tsakalidou, E., & De Vuyst, L. (2006). International Journal of Food Microbiology, 106, 1–24. doi:10.1016/j.ijfoodmicro.2005.06.026.

    Article  CAS  Google Scholar 

  21. Ennahar, S., Asou, Y., Zendo, T., Sanomoto, K., & Ishizaki, A. (2001). International Journal of Food Microbiology, 70, 291–301. doi:10.1016/S0168-1605(01)00565-7.

    Article  CAS  Google Scholar 

  22. Ohmomo, S., Murata, S., Katayama, N., Nitisinprasart, S., Kobayashi, M., Nakajima, T., et al. (2000). Journal of Applied Microbiology, 88, 81–89. doi:10.1046/j.1365-2672.2000.00866.x.

    Article  CAS  Google Scholar 

  23. Cintas, L. M., Casaus, P., Havarstein, L. S., Hernandez, P. E., & Nes, I. F. (1997). Applied and Environmental Microbiology, 63, 4321–4330.

    CAS  Google Scholar 

  24. Floriano, B., Ruiz-Barba, J. L., & Jimenez-Diaz, R. (1998). Applied and Environmental Microbiology, 64, 4883–4890.

    CAS  Google Scholar 

  25. Yanagida, F., Chen, Y., Onda, T., & Shinohara, T. (2005). Letters in Applied Microbiology, 40, 430–435. doi:10.1111/j.1472-765X.2005.01693.x.

    Article  CAS  Google Scholar 

  26. De Kwaadsteniet, M., Todorov, S. D., Knoetze, H., & Dicks, L. M. T. (2005). International Journal of Food Microbiology, 105, 433–444. doi:10.1016/j.ijfoodmicro.2005.03.021.

    Article  Google Scholar 

  27. Ferreira, A. E., Canal, N., Morales, D., Fuentefria, D. B., & Corcao, G. (2007). Brazilian Archives of Biology and Technology, 50, 249–258.

    Google Scholar 

  28. Losteinkit, C., Uchaiyama, K., Ochi, S., Takaoka, T., Nagahisa, K., & Shioya, S. (2001). Journal of Bioscience and Bioengineering, 91, 390–395. doi:10.1263/jbb.91.390.

    Article  CAS  Google Scholar 

  29. Park, S. H., Itoh, K., & Fujisawa, T. (2003). Journal of Applied Microbiology, 95, 294–300. doi:10.1046/j.1365-2672.2003.01975.x.

    Article  CAS  Google Scholar 

  30. Kawamoto, S., Shima, J., Sato, R., Eguchi, T., Ohmomo, S., Shibato, J., et al. (2002). Applied and Environmental Microbiology, 68, 3830–3840. doi:10.1128/AEM.68.8.3830-3840.2002.

    Article  CAS  Google Scholar 

  31. Atrih, A., Rekhif, N., Moir, A. J. G., Lebrihi, A., & Lefebvre, G. (2001). International Journal of Food Microbiology, 68, 93–104. doi:10.1016/S0168-1605(01)00482-2.

    Article  CAS  Google Scholar 

  32. Galvez, A., Valdivia, E., Abriouel, H., Camafeita, E., Mendez, E., Martinez-Bueno, M., et al. (1998). Archives of Microbiology, 171, 59–65. doi:10.1007/s002030050678.

    Article  CAS  Google Scholar 

  33. Hernandez, D., Cardell, E., & Zarate, V. (2005). Journal of Applied Microbiology, 99, 77–84. doi:10.1111/j.1365-2672.2005.02576.x.

    Article  CAS  Google Scholar 

  34. Marekova, M., Laukova, A., De Vuyst, L., Skaugen, M., & Nes, I. F. (2003). Journal of Applied Microbiology, 94, 523–530. doi:10.1046/j.1365-2672.2003.01861.x.

    Article  CAS  Google Scholar 

  35. Zhu, W. M., Liu, W., & Wu, D. Q. (2000). Journal of Applied Microbiology, 88, 877–886. doi:10.1046/j.1365-2672.2000.01027.x.

    Article  CAS  Google Scholar 

  36. Moreno, M. R., Leisner, J. J., Tee, L. K., Ley, C., Radu, S., Rusul, G., et al. (2002). Journal of Applied Microbiology, 92, 147–157. doi:10.1046/j.1365-2672.2002.01509.x.

    Article  CAS  Google Scholar 

  37. Audisio, M. C., Terzolo, H. R., & Apella, M. C. (2005). Applied and Environmental Microbiology, 71, 3373–3375. doi:10.1128/AEM.71.6.3373-3375.2005.

    Article  CAS  Google Scholar 

  38. Jack, R. W., Tagg, J. R., & Ray, B. (1995). Microbiological Reviews, 59, 171–200.

    CAS  Google Scholar 

  39. Joosten, H. M. L. J., Nunez, M., Devereese, B., Van Beeumen, J., & Marugg, J. D. (1996). Applied and Environmental Microbiology, 62, 4220–4223.

    CAS  Google Scholar 

  40. Martinez-Bueno, M., Maqueda, M., Galvez, A., Samyn, B., Van Beeumen, J., Coyette, J., et al. (1994). Journal of Bacteriology, 176, 6334–6339.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Council of Scientific and Industrial Research and the Department of Biotechnology, India. The facilities provided to the Department of Genetics, by University Grant Commission under SAP and by Department of Science and Technology, Government of India under FIST program, is thankfully acknowledged. Author MK was supported by a UGC fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheela Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, M., Tiwari, S.K. & Srivastava, S. Purification and Characterization of Enterocin LR/6, a Bacteriocin from Enterococcus faecium LR/6. Appl Biochem Biotechnol 160, 40–49 (2010). https://doi.org/10.1007/s12010-009-8586-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8586-z

Keywords

Navigation